Patents by Inventor Ji-Fu Kung

Ji-Fu Kung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160049506
    Abstract: A semiconductor device including a substrate, a plurality of isolation structures, at least a gate structure, a plurality of dummy gate structures and a plurality of epitaxial structures is provided. The substrate has an active area defined by the isolation structures disposed within the substrate. That is, the active area is defined between the isolation structures. The gate structure is disposed on the substrate and located within the active area. The dummy gate structures are disposed on the substrate and located out of the active area. The edge of each dummy gate structure is separated from the boundary of the active area with a distance smaller than 135 angstroms. The epitaxial structures are disposed within the active area and in a portion of the substrate on two sides of the gate structure. The invention also provided a method for fabricating semiconductor device.
    Type: Application
    Filed: October 28, 2015
    Publication date: February 18, 2016
    Inventors: Hsin-Ming HOU, Yu-Cheng TUNG, Ji-Fu KUNG, Wai-Yi LIEN, Ming-Tsung CHEN
  • Patent number: 9202914
    Abstract: A semiconductor device including a substrate, a plurality of isolation structures, at least a gate structure, a plurality of dummy gate structures and a plurality of epitaxial structures is provided. The substrate has an active area defined by the isolation structures disposed within the substrate. That is, the active area is defined between the isolation structures. The gate structure is disposed on the substrate and located within the active area. The dummy gate structures are disposed on the substrate and located out of the active area. The edge of each dummy gate structure is separated from the boundary of the active area with a distance smaller than 135 angstroms. The epitaxial structures are disposed within the active area and in a portion of the substrate on two sides of the gate structure. The invention also provided a method for fabricating semiconductor device.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: December 1, 2015
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventors: Hsin-Ming Hou, Yu-Cheng Tung, Ji-Fu Kung, Wai-Yi Lien, Ming-Tsung Chen
  • Publication number: 20150323586
    Abstract: For improving wafer fabrication, yield and lifetime of wafers are predicted by determining coefficients of a yield domain for wafer yield prediction and a lifetime domain for a wafer lifetime prediction, an integral domain, an electric/layout domain, a metrology/defect domain, and a machine sensor domain in a hierarchical manner. With the aid of the hierarchically-determined coefficients, noises in prediction can be reduced so that precision of prediction results of the yields or the lifetimes of wafers can be raised.
    Type: Application
    Filed: July 20, 2015
    Publication date: November 12, 2015
    Inventors: Hsin-Ming Hou, Ji-Fu Kung
  • Patent number: 9159809
    Abstract: A multi-gate transistor device includes a substrate, a fin structure extending along a first direction formed on the substrate, a gate structure extending along a second direction formed on the substrate, a drain region having a first conductivity type formed in the fin structure, a source region having a second conductivity type formed in the fin structure, and a first pocket doped region having the first conductivity type formed in and encompassed by the source region. The first conductivity type and the second conductivity type are complementary to each other.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: October 13, 2015
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hsin-Ming Hou, Ji-Fu Kung
  • Patent number: 9129076
    Abstract: For improving wafer fabrication, yield and lifetime of wafers are predicted by determining coefficients of a yield domain for wafer yield prediction and a lifetime domain for a wafer lifetime prediction, an integral domain, an electric/layout domain, a metrology/defect domain, and a machine sensor domain in a hierarchical manner. With the aid of the hierarchically-determined coefficients, noises in prediction can be reduced so that precision of prediction results of the yields or the lifetimes of wafers can be raised.
    Type: Grant
    Filed: December 8, 2013
    Date of Patent: September 8, 2015
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hsin-Ming Hou, Ji-Fu Kung
  • Publication number: 20150206810
    Abstract: A stacked semiconductor structure and a manufacturing method for the same are provided. The stacked semiconductor structure is provided, which comprises a first semiconductor substrate, a second semiconductor substrate, a dielectric layer, a trench, a via, and a conductive structure. The first semiconductor substrate comprises a first substrate portion and a first conductive layer on an active surface of the first substrate portion. The second semiconductor substrate comprises a second substrate portion and a second conductive layer on an active surface of the second substrate portion. The trench passes through the second substrate portion and exposing the second conductive layer. The via passes through the dielectric layer and exposes the first conductive layer. The conductive structure has an upper portion filling the trench and a lower portion filling the via. Opposing side surfaces of the upper portion are beyond opposing side surfaces of the lower portion.
    Type: Application
    Filed: January 21, 2014
    Publication date: July 23, 2015
    Applicant: United Microelectronics Corp.
    Inventors: Hsin-Ming Hou, Ji-Fu Kung
  • Patent number: 9024407
    Abstract: A monitoring testkey for a wafer is provided. The monitoring testkey includes a first metal oxide semiconductor (MOS) transistor having a channel extending in a first direction, a second MOS transistor having a channel extending in a second direction, a common gate pad electrically connected to gate electrodes of the first MOS transistor and the second MOS transistor, a first source pad electrically connected to source electrodes of the first MOS transistor and the second MOS transistor, a first drain pad electrically connected to a drain electrode of the first MOS transistor, and a second drain pad electrically connected to a drain electrode of the second MOS transistor. The monitoring testkey helps to improve the critical dimension uniformity and electrical characteristics uniformity of elements in a wafer.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: May 5, 2015
    Assignee: United Microelectronics Corporation
    Inventors: Chin-Chun Huang, Ji-Fu Kung, Wei-Po Chiu, Nick Chao
  • Patent number: 8965550
    Abstract: A wafer fabrication outcome, such as wafer yield or wafer lifetime, is predicted by excluding uncontrollable but measurable internal/external noises of a DOE system, and by rendering relations between wafer design variables and wafer outcome outputs to be more causal, as well as the relations between variances for each of the wafer design variables and the wafer outcome outputs. With the aid of a wafer fabrication outcome predicting model formed by the more causal relations, precision of predicting wafer outcomes can be raised, and performance of wafer fabrication can be thus raised as a result.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: February 24, 2015
    Assignee: United Microelectronics Corp.
    Inventors: Hsin-Ming Hou, Ji-Fu Kung
  • Patent number: 8930865
    Abstract: A layout correcting method and a layout correcting system are provided. The layout correcting method includes the following steps. An integrated circuit design layout is provided. A plurality of performance parameters of the integrated circuit design layout are analyzed. A plurality of devices under test is selected according to the performance parameters. A computer simulating process is performed on the devices under test and a direct probing process is performed on the devices under test. The direct probing process is an on-chip test for comparing each device under test and an environment condition thereof by a Boolean algebra algorithm. A plurality of differences between the results of the computer simulating process and the direct probing process is analyzed. The integrated circuit design layout is corrected according to differences between the results of the computer simulating process and the direct probing process.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: January 6, 2015
    Assignee: United Microelectronics Corp.
    Inventors: Hsin-Ming Hou, Ji-Fu Kung
  • Publication number: 20140089871
    Abstract: For improving wafer fabrication, yield and lifetime of wafers are predicted by determining coefficients of a yield domain for wafer yield prediction and a lifetime domain for a wafer lifetime prediction, an integral domain, an electric/layout domain, a metrology/defect domain, and a machine sensor domain in a hierarchical manner. With the aid of the hierarchically-determined coefficients, noises in prediction can be reduced so that precision of prediction results of the yields or the lifetimes of wafers can be raised.
    Type: Application
    Filed: December 8, 2013
    Publication date: March 27, 2014
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hsin-Ming Hou, Ji-Fu Kung
  • Patent number: 8643397
    Abstract: A transistor array for testing is provided. The transistor array includes a plurality of tested units. Each of the tested unit includes a tested transistor and a first to third switches. The tested transistor has a control terminal, a first and a second terminals and a bulk. The first switch is coupled between the first terminal and a leakage transporting line. The second switch is coupled between the second terminal and the leakage transporting line. The third switch is coupled between the control terminal and a bias providing line. The first to third switches are turned on or turned off according to a control signal. When the tested transistor is selected to be tested, the first to third switches are turned on according to the control signal.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: February 4, 2014
    Assignee: Untied Microelectronics Corp.
    Inventors: Hsin-Ming Hou, Ji-Fu Kung
  • Publication number: 20130240956
    Abstract: A semiconductor device including a substrate, a plurality of isolation structures, at least a gate structure, a plurality of dummy gate structures and a plurality of epitaxial structures is provided. The substrate has an active area defined by the isolation structures disposed within the substrate. That is, the active area is defined between the isolation structures. The gate structure is disposed on the substrate and located within the active area. The dummy gate structures are disposed on the substrate and located out of the active area. The edge of each dummy gate structure is separated from the boundary of the active area with a distance smaller than 135 angstroms. The epitaxial structures are disposed within the active area and in a portion of the substrate on two sides of the gate structure. The invention also provided a method for fabricating semiconductor device.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 19, 2013
    Applicant: UNITED MICROELECTRONICS CORPORATION
    Inventors: Hsin-Ming Hou, Yu-Cheng Tung, Ji-Fu Kung, Wai-Yi Lien, Ming-Tsung Chen
  • Publication number: 20130221407
    Abstract: A multi-gate transistor device includes a substrate, a fin structure extending along a first direction formed on the substrate, a gate structure extending along a second direction formed on the substrate, a drain region having a first conductivity type formed in the fin structure, a source region having a second conductivity type formed in the fin structure, and a first pocket doped region having the first conductivity type formed in and encompassed by the source region. The first conductivity type and the second conductivity type are complementary to each other.
    Type: Application
    Filed: February 29, 2012
    Publication date: August 29, 2013
    Inventors: Hsin-Ming Hou, Ji-Fu Kung
  • Publication number: 20130147510
    Abstract: A monitoring testkey for a wafer is provided. The monitoring testkey includes a first metal oxide semiconductor (MOS) transistor having a channel extending in a first direction, a second MOS transistor having a channel extending in a second direction, a common gate pad electrically connected to gate electrodes of the first MOS transistor and the second MOS transistor, a first source pad electrically connected to source electrodes of the first MOS transistor and the second MOS transistor, a first drain pad electrically connected to a drain electrode of the first MOS transistor, and a second drain pad electrically connected to a drain electrode of the second MOS transistor. The monitoring testkey helps to improve the critical dimension uniformity and electrical characteristics uniformity of elements in a wafer.
    Type: Application
    Filed: December 7, 2011
    Publication date: June 13, 2013
    Applicant: UNITED MICROELECTRONICS CORPORATION
    Inventors: Chin-Chun HUANG, Ji-Fu Kung, Wei-Po Chiu, Nick Chao
  • Publication number: 20130110272
    Abstract: A wafer fabrication outcome, such as wafer yield or wafer lifetime, is predicted by excluding uncontrollable but measurable internal/external noises of a DOE system, and by rendering relations between wafer design variables and wafer outcome outputs to be more causal, as well as the relations between variances for each of the wafer design variables and the wafer outcome outputs. With the aid of a wafer fabrication outcome predicting model formed by the more causal relations, precision of predicting wafer outcomes can be raised, and performance of wafer fabrication can be thus raised as a result.
    Type: Application
    Filed: November 1, 2011
    Publication date: May 2, 2013
    Inventors: Hsin-Ming Hou, Ji-Fu Kung
  • Patent number: 8434030
    Abstract: An integrated circuit design and fabrication method includes the following steps. Firstly, an integrated circuit design layout is provided. Then, a first hotspot group and a second hotpot group are searched from the integrated circuit design layout. Then, a hotspot score is acquired according to the first hotspot group, the second hotpot group and a product functionality. If the hotspot score is higher than a criterion, the integrated circuit design layout is corrected according to the first hotspot group and the second hotpot group.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: April 30, 2013
    Assignee: United Microelectronics Corporation
    Inventors: Hsin-Ming Hou, Ji-Fu Kung
  • Publication number: 20130076388
    Abstract: A transistor array for testing is provided. The transistor array includes a plurality of tested units. Each of the tested unit includes a tested transistor and a first to third switches. The tested transistor has a control terminal, a first and a second terminals and a bulk. The first switch is coupled between the first terminal and a leakage transporting line. The second switch is coupled between the second terminal and the leakage transporting line. The third switch is coupled between the control terminal and a bias providing line. The first to third switches are turned on or turned off according to a control signal. When the tested transistor is selected to be tested, the first to third switches are turned on according to the control signal.
    Type: Application
    Filed: September 26, 2011
    Publication date: March 28, 2013
    Applicant: United Microelectronics Corp.
    Inventors: HSIN-MING HOU, JI-FU KUNG
  • Publication number: 20130061188
    Abstract: For improving wafer fabrication, yield and lifetime of wafers are predicted by determining coefficients of a yield/lifetime domain, an integral domain, an electric/layout domain, a metrology/defect domain, and a machine sensor domain in a hierarchical manner. With the aid of the hierarchically-determined coefficients, noises in prediction can be reduced so that precision of prediction results of the yields or the lifetimes of wafers can be raised.
    Type: Application
    Filed: September 5, 2011
    Publication date: March 7, 2013
    Inventors: Hsin-Ming Hou, Ji-Fu Kung
  • Patent number: 7320907
    Abstract: A method for controlling lattice defects at a junction is described, which is used in accompany with an ion implantation step for forming a junction in a substrate and a subsequent annealing step. In the method, an extra implantation step is performed to increase the stress in the substrate apart from the junction, such that enhanced recrystallization is induced in the annealing step to lower the stress at the junction. The extra implantation step can be performed before or after the ion implantation step for forming the junction. A method for forming LDD or S/D regions of a CMOS device is also described, wherein at least one extra implantation step as mentioned above is performed before, between or after the ion implantation steps for forming the LDD or S/D regions of NMOS and PMOS transistors.
    Type: Grant
    Filed: November 29, 2004
    Date of Patent: January 22, 2008
    Assignee: United Microelectronics Corp.
    Inventors: Ping-Pang Hsieh, Ji-Fu Kung
  • Publication number: 20060115969
    Abstract: A method for controlling lattice defects at a junction is described, which is used in accompany with an ion implantation step for forming a junction in a substrate and a subsequent annealing step. In the method, an extra implantation step is performed to increase the stress in the substrate apart from the junction, such that enhanced recrystallization is induced in the annealing step to lower the stress at the junction. The extra implantation step can be performed before or after the ion implantation step for forming the junction. A method for forming LDD or S/D regions of a CMOS device is also described, wherein at least one extra implantation step as mentioned above is performed before, between or after the ion implantation steps for forming the LDD or S/D regions of NMOS and PMOS transistors.
    Type: Application
    Filed: November 29, 2004
    Publication date: June 1, 2006
    Inventors: Ping-Pang Hsieh, Ji-Fu Kung