Patents by Inventor Ji Hoon Ryu

Ji Hoon Ryu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11031632
    Abstract: The present invention relates to a method for recovering a positive electrode active material from a lithium secondary battery including: 1) separating a positive electrode into a collector and a positive electrode part; 2) removing an organic substance by firing the separated positive electrode part; 3) washing the fired resultant and removing remaining fluorine (F); 4) adding a lithium-containing material into the washed resultant and firing to recover a lithium transition metal oxide.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: June 8, 2021
    Inventors: Dong Hun Lee, Dae Jin Lee, Ji Hoon Ryu, Gi Beom Han, Dong Hwi Kim, Wang Mo Jung, Sang Wook Lee, Eun Sol Lho
  • Patent number: 10998548
    Abstract: The present invention provided a positive electrode active material for a lithium secondary battery including lithium cobalt oxide particles. The lithium cobalt oxide particles include lithium deficient lithium cobalt oxide having Li/Co molar ratio of less than 1, belongs to an Fd-3m space group, and having a cubic crystal structure, in surface of the particle and in a region corresponding to a distance from 0% to less than 100% from the surface of the particle relative to a distance (r) from the surface to the center of the particle. In the positive electrode active material for a lithium secondary battery according to the present invention, the intercalation and deintercalation of lithium at the surface of a particle may be easy, and the output property and rate characteristic may be improved when applied to a battery.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: May 4, 2021
    Inventors: Chi Ho Jo, Ji Hoon Ryu, Min Suk Kang, Sun Sik Shin, Wang Mo Jung
  • Publication number: 20210043916
    Abstract: The present disclosure relates to an electrode for an all solid-state battery and a method for manufacturing the same. The electrode comprises an electrode active material layer, wherein the gaps between the electrode active material particles forming the electrode active material layer are filled with a mixture of a polymeric solid electrolyte and a conductive material. The method for manufacturing the electrode comprises a solvent annealing process, and the contact between the electrode active material particles and the conductive material is improved through the solvent annealing process, thereby improving ion conductivity of the electrode and capacity realization in the battery.
    Type: Application
    Filed: May 3, 2019
    Publication date: February 11, 2021
    Applicant: LG Chem, Ltd.
    Inventors: Jung-Pil Lee, Ji-Hoon Ryu, Sung-Joong Kang, Jae-Hyun Lee
  • Patent number: 10916776
    Abstract: The present invention relates to positive electrode active material particles and a secondary battery including the same and provides positive electrode active material particles comprising: a core including a first lithium transition metal oxide; and a shell surrounding the core, wherein the shell has a form in which metal oxide particles are embedded in a second lithium transition metal oxide, and at least a part of the metal oxide particles is present by being exposed at a surface of the shell. The positive electrode active material particles according to the present invention prevent a transition metal and an electrolyte from causing a side reaction by exposing a part of a metal oxide, having low reactivity, at a surface of the active materials, thereby improving safety and lifespan. As the electrical conductivity of the active materials becomes lower, excellent stability can be maintained even at high temperature and in battery-breakdown situations.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: February 9, 2021
    Inventors: Chi Ho Jo, Ji Hoon Ryu, Min Suk Kang, Sun Sik Shin, Wang Mo Jung
  • Patent number: 10910641
    Abstract: A method for positive electrode active material for a secondary battery includes preparing a precursor by reacting a nickel raw material, a cobalt raw material and an M1 raw material; forming a first surface-treated layer including an oxide of Formula 2 below, on a surface of a core including a lithium composite metal oxide of Formula 1 below, by mixing the precursor with a lithium raw material and an M3 raw material, firing the resultant mixture; and forming a second surface-treated layer including a lithium compound of Formula 3 below, on the core with the first surface-treated layer formed thereon, LiaNi1?x?yCoxM1yM3zM2wO2??[Formula 1] LimM4O(m+n)/2??[Formula 2] LipM5qAr??[Formula 3] wherein, in Formulae 1 to 3, A, M1 to M5, a, x, y, z, w, m, n, p, and q are the same as those defined in the specification.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: February 2, 2021
    Inventors: Ju Kyung Shin, Wang Mo Jung, Byung Chun Park, Ji Hoon Ryu, Sang Min Park, Sang Wook Lee
  • Publication number: 20210020945
    Abstract: The present disclosure relates to an all solid-state battery cell and a method for manufacturing the same. The gaps between the electrode active material particles forming the electrode active material layer are filled with a mixture of a polymeric solid electrolyte with a conductive material, and an organic solid electrolyte membrane is interposed between the positive electrode and the negative electrode. The method comprises a solvent annealing process to improve the contact between the electrode active material particles and the conductive material and to improve the contact between the electrode active material layer and the organic solid electrolyte membrane, thereby providing an all solid-state battery cell with improved ion conductivity and capacity realization.
    Type: Application
    Filed: May 3, 2019
    Publication date: January 21, 2021
    Applicant: LG Chem, Ltd.
    Inventors: Jung-Pil Lee, Ji-Young Kim, Ji-Hoon Ryu, Sung-Joong Kang, Jae-Hyun Lee
  • Patent number: 10873104
    Abstract: The present invention provides a positive electrode active material for a secondary battery, the positive electrode active material being a secondary particle that includes a primary particle having a rectangular parallelepiped shape, the rectangular parallelepiped having at least one portion of vertices and edges formed in a round shape that is convex outward, wherein 1% to 40% of a total surface area of the secondary particle has open porosity, and the primary particle includes a lithium composite metal oxide of Formula 1 herein so that intercalation and deintercalation of lithium are facilitated, elution of an active material-constituting metal element is suppressed, and excellent structural stability is exhibited, thereby decreasing resistance and improving output and lifespan characteristics when applied to a battery, and a secondary battery comprising the same.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: December 22, 2020
    Inventors: Sang Min Park, Wang Mo Jung, Byung Chun Park, Ju Kyung Shin, Ji Hoon Ryu, Sang Wook Lee
  • Patent number: 10862156
    Abstract: The present invention relates to a positive electrode active material for a secondary battery and a secondary battery including the same, wherein the positive electrode active material includes a core, a shell disposed to surround the core, and a buffer layer which is disposed between the core and the shell and includes pores and a three-dimensional network structure connecting the core and the shell, wherein the core, the shell, and the three-dimensional network structure of the buffer layer each independently includes a polycrystalline lithium composite metal oxide of Formula 1 including a plurality of grains, and the grains have an average grain diameter of 50 nm to 150 nm.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: December 8, 2020
    Inventors: Sang Wook Lee, Wang Mo Jung, Byung Chun Park, Ju Kyung Shin, Ji Hoon Ryu, Sang Min Park
  • Patent number: 10818916
    Abstract: Provided are a positive electrode active material for a secondary battery which may exhibit excellent capacity and life characteristics when used in the battery by including a core, and a surface treatment layer disposed on a surface of the core, wherein the core is a secondary particle including a plurality of primary particles, the primary particles include a polycrystalline lithium composite metal oxide of Formula 1 having an average grain diameter of 50 nm to 200 nm, and the surface treatment layer includes a lithium oxide including lithium and at least one metal selected from the group consisting of boron (B), tungsten (W), hafnium (Hf), niobium (Nb), tantalum (Ta), molybdenum (Mo), silicon (Si), tin (Sn), and zirconium (Zr), and a secondary battery including the same, LiaNi1-x-yCoxM1yM3zM2wO2??[Formula 1] (in Formula 1, M1, M2, M3, a, x, y, z, and w are the same as those defined in the specification).
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: October 27, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Ju Kyung Shin, Wang Mo Jung, Byung Chun Park, Ji Hoon Ryu, Sang Min Park, Sang Wook Lee
  • Publication number: 20200287245
    Abstract: The present disclosure relates to a solid electrolyte battery including a negative electrode including: a negative electrode current collector; a first negative electrode active material layer formed on at least one surface of the negative electrode current collector and including a first negative electrode active material, a first solid electrolyte and a first electrolyte salt; and a second negative electrode active material layer formed on the first negative electrode active material layer and including a second negative electrode active material, a second solid electrolyte, a second electrolyte salt and a plasticizer having a melting point of 30-130° C., the solid electrolyte battery is activated at a temperature between the melting point of the plasticizer and 130° C., and a solid electrolyte interface (SEI) layer is formed on the surface of the second negative electrode active material.
    Type: Application
    Filed: April 10, 2019
    Publication date: September 10, 2020
    Applicant: LG Chem, Ltd.
    Inventors: Ji-Hoon Ryu, Jung-Pil Lee, Sung-Joong Kang, Eun-Bee Kim, Ji-Young Kim, Suk-Woo Lee, Jae-Hyun Lee
  • Publication number: 20200251714
    Abstract: The present disclosure relates to a positive electrode for a solid electrolyte battery which includes: a positive electrode current collector; a first positive electrode active material layer formed on at least one surface of the positive electrode current collector and including a first positive electrode active material, a first solid electrolyte and a first electrolyte salt; and a second positive electrode active material layer formed on the first positive electrode active material layer and including a second positive electrode active material, a second solid electrolyte, a second electrolyte salt and a plasticizer, wherein the plasticizer has a melting point of 30-130° C. The present disclosure also relates to a solid electrolyte battery including the positive electrode.
    Type: Application
    Filed: April 10, 2019
    Publication date: August 6, 2020
    Applicant: LG Chem, Ltd.
    Inventors: Ji-Hoon Ryu, Jung-Pil Lee, Sung-Joong Kang, Eun-Bee Kim, Hyo-Sik Kim, Suk-Woo Lee, Jae-Hyun Lee
  • Patent number: 10720634
    Abstract: The present disclosure relates to a method for producing a positive electrode for a secondary battery, the method including applying a composition for forming a positive electrode on a positive electrode current collector to form a positive electrode mixture layer, and rolling the positive electrode mixture layer such that the elongation of the positive electrode current collector is less than 1%, to produce a positive electrode.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: July 21, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Ji Hye Kim, Wang Mo Jung, Byung Chun Park, Ji Hoon Ryu, Jung Min Han
  • Publication number: 20200153041
    Abstract: Provided is a composite solid electrolyte membrane for an all-solid-state secondary battery, including: a phase transformation layer containing a plasticizer and a lithium salt; a porous polymer sheet layer; and a solid polymer electrolyte layer, wherein the phase transformation layer, the porous polymer sheet layer and the solid polymer electrolyte layer are stacked successively, and the phase transformation layer is disposed in such a manner that it faces a negative electrode when manufacturing an electrode assembly. An all-solid-state secondary battery including the composite solid electrolyte membrane is also provided. The composite solid electrolyte membrane for an all-solid-state secondary battery reduces the interfacial resistance with an electrode, increases ion conductivity, and improves the safety of a battery.
    Type: Application
    Filed: March 22, 2019
    Publication date: May 14, 2020
    Applicant: LG Chem, Ltd.
    Inventors: Ji-Hoon Ryu, Guilong Jin, Ji-Hee Ahn, Sung-Joong Kang, Jae-Hyun Lee
  • Patent number: 10637064
    Abstract: The present invention relates to a method for manufacturing a conductor, and a lithium secondary battery including a conductor manufactured using the manufacturing method, and the method for manufacturing a conductor includes removing metal impurities in a conductor by irradiating microwave on the conductor including the metal impurities and converting the metal impurities into metal oxides. A conductor manufactured using the manufacturing method converts metal impurities included in the conductor to metal oxides that are inactive at a battery operating voltage and not eluted in an electrolyte liquid, and therefore, is capable of enhancing battery performance properties, particularly, capacity and lifespan properties without concern of metal impurity elution and a defect occurrence under a low pressure caused therefrom.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: April 28, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Ji Hoon Ryu, Dong Myung Kim, Ki Tae Kim, Rae Hwan Jo
  • Publication number: 20200127324
    Abstract: Provided is provided a lithium metal battery which includes a composite solid electrolyte membrane interposed between a lithium metal negative electrode and a positive electrode, wherein the composite solid electrolyte membrane includes: a phase transformation layer containing a plasticizer and a lithium salt; a porous polymer sheet layer; and a solid polymer electrolyte layer, the phase transformation layer, the porous polymer sheet layer and the solid polymer electrolyte layer stacked successively, and the phase transformation layer is disposed in such a manner that it faces the lithium metal negative electrode. The lithium metal battery shows reduced resistance at the interface with an electrode and increased ion conductivity, has improved safety, and provides improved energy density of an electrode.
    Type: Application
    Filed: March 22, 2019
    Publication date: April 23, 2020
    Applicant: LG Chem, Ltd.
    Inventors: Ji-Hoon Ryu, Guilong Jin, Sung-Joong Kang, Jae-Hyun Lee
  • Patent number: 10622670
    Abstract: The present invention relates to a positive electrode active material for a secondary battery, which comprises a core including a lithium composite metal oxide, and a surface treatment layer located on a surface of the core and including an amorphous oxide, wherein the amorphous oxide including silicon (Si), nitrogen (N) and at least one metal element selected from the group consisting of a Group 1A element, a Group 2A element, and a Group 3B element, and a method for preparing the same.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: April 14, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Dae Jin Lee, Dong Hun Lee, Ji Hoon Ryu, Gi Beom Han, Dong Hwi Kim, Wang Mo Jung, Sang Wook Lee
  • Publication number: 20190372115
    Abstract: A method for positive electrode active material for a secondary battery includes preparing a precursor by reacting a nickel raw material, a cobalt raw material and an M1 raw material; forming a first surface-treated layer including an oxide of Formula 2 below, on a surface of a core including a lithium composite metal oxide of Formula 1 below, by mixing the precursor with a lithium raw material and an M3 raw material, firing the resultant mixture; and forming a second surface-treated layer including a lithium compound of Formula 3 below, on the core with the first surface-treated layer formed thereon, LiaNi1?x?yCoxM1yM3zM2wO2 ??[Formula 1] LimM4O(m+n)/2 ??[Formula 2] LipM5qAr ??[Formula 3] wherein, in Formulae 1 to 3, A, M1 to M5, a, x, y, z, w, m, n, p, and q are the same as those defined in the specification.
    Type: Application
    Filed: August 15, 2019
    Publication date: December 5, 2019
    Applicant: LG Chem, Ltd.
    Inventors: Ju Kyung Shin, Wang Mo Jung, Byung Chun Park, Ji Hoon Ryu, Sang Min Park, Sang Wook Lee
  • Patent number: 10490816
    Abstract: The present invention relates to a positive electrode active material for a lithium secondary battery, and a lithium secondary battery including the same, and the positive electrode active material includes lithium cobalt oxide particles. The lithium cobalt oxide particles include lithium cobalt oxide having a Li/Co molar ratio of less than 1 in the particles. Good rate property and life property may be obtained without worrying on the deterioration of initial capacity property.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: November 26, 2019
    Assignee: LG Chem, Ltd.
    Inventors: Min Suk Kang, Chi Ho Jo, Ji Hoon Ryu, Sun Sik Shin, Wang Mo Jung
  • Patent number: 10439216
    Abstract: The present invention provides a positive electrode active material for secondary battery and a secondary battery including the same. The positive electrode active material includes a core including a lithium composite metal oxide of Formula 1 below, a first surface-treated layer positioned on the surface of the core and including a lithium oxide of Formula 2 below, and a second surface treated layer positioned on the core or the first surface-treated layer and including a lithium compound of Formula 3. Thus, the present invention can improve capacity characteristics and output characteristics of a battery and also reduce the generation of gas, LiaNi1-x-yCoxM1yM3zM2wO2 ??[Formula 1] LimM4O(m+n)/2 ??[Formula 2] LipM5qAr ??[Formula 3] (in formulae 1 to 3, A, M1 to M5, a, x, y, z, w, m, n, p, and q are the same as those defined in the specification).
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: October 8, 2019
    Assignee: LG Chem, Ltd.
    Inventors: Ju Kyung Shin, Wang Mo Jung, Byung Chun Park, Ji Hoon Ryu, Sang Min Park, Sang Wook Lee
  • Patent number: 10236503
    Abstract: A device for preparing a lithium composite transition metal oxide includes first and second mixers continuously arranged in a direction in which a fluid proceeds, wherein the first mixer has a closed structure including a hollow fixed cylinder, a rotating cylinder having the same axis as that of the hollow fixed cylinder and having an outer diameter that is smaller than an inner diameter of the fixed cylinder, an electric motor to generate power for rotation of the rotating cylinder, a rotation reaction space, as a separation space between the hollow fixed cylinder and the rotating cylinder, in which ring-shaped vortex pairs periodically arranged along a rotating shaft and rotating in opposite directions are formed, first inlets through which raw materials are introduced into the rotation reaction space, and a first outlet to discharge a reaction fluid formed from the rotation reaction space.
    Type: Grant
    Filed: January 2, 2014
    Date of Patent: March 19, 2019
    Assignee: LG Chem, Ltd.
    Inventors: Ji Hoon Ryu, Sung Joong Kang, Seong Hoon Kang, Sang Seung Oh, Wang Mo Jung, Chi Ho Jo, Gi Beom Han