Patents by Inventor Ji Qing

Ji Qing has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9678515
    Abstract: The present disclosure provides a lightweight two-stage pressure regulator for controlling the flow of gas from a high pressure source. The two stage pressure regulator comprises a gas inlet, a first piston pressure regulator stage, a second piston pressure regulator stage and a gas outlet. The first piston pressure regulator stage and the second piston pressure regulator stage are arranged to be coaxial such that the gas flow path is substantially along the axis of the first and second piston regulator stages.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: June 13, 2017
    Assignee: The Boeing Company
    Inventors: Nieves Lapena-Rey, Enrique Troncoso-Munoz, Alfredo Criado Abad, Pedro Pablo Martin-Alonso, Ji Qing
  • Publication number: 20160216715
    Abstract: The present disclosure provides a lightweight two-stage pressure regulator for controlling the flow of gas from a high pressure source. The two stage pressure regulator comprises a gas inlet, a first piston pressure regulator stage, a second piston pressure regulator stage and a gas outlet. The first piston pressure regulator stage and the second piston pressure regulator stage are arranged to be coaxial such that the gas flow path is substantially along the axis of the first and second piston regulator stages.
    Type: Application
    Filed: October 29, 2014
    Publication date: July 28, 2016
    Applicant: The Boeing Company
    Inventors: Nieves Lapena-Rey, Enrique Troncoso-Munoz, Alfredo Criado Abad, Pedro Pablo Martin-Alonso, Ji Qing
  • Patent number: 8981319
    Abstract: A system for measuring intensity distribution of light includes a carbon nanotube array located on a surface of a substrate, a reflector and an imaging element. The carbon nanotube array absorbs photons of a light source and radiates a visible light. The reflector is used to reflect the visible light, and the reflector is spaced from the carbon nanotube array. The carbon nanotube array is located between the reflector and the substrate. The imaging element is used to image the visible light. The imaging element is spaced from the substrate.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: March 17, 2015
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Jun Zhu, Jing-Lei Zhu, Kai-Li Jiang, Chen Feng, Ji-Qing Wei, Guo-Fan Jin, Shou-Shan Fan
  • Patent number: 8830453
    Abstract: A method for measuring intensity distribution of light includes a step of providing a carbon nanotube array located on a surface of a substrate. The carbon nanotube array has a top surface away from the substrate. The carbon nanotube array with the substrate is located in an inertia environment or a vacuum environment. A light source irradiates the top surface of the carbon nanotube array, to make the carbon nanotube array radiate a visible light. A reflector is provided, and the visible light is reflected by the reflector. An imaging element images the visible light reflected by the reflector, to obtain an intensity distribution of the light source.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: September 9, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Jun Zhu, Jing-Lei Zhu, Kai-Li Jiang, Chen Feng, Ji-Qing Wei, Guo-Fan Jin, Shou-Shan Fan
  • Publication number: 20130329213
    Abstract: A method for measuring intensity distribution of light includes a step of providing a carbon nanotube array located on a surface of a substrate. The carbon nanotube array has a top surface away from the substrate. The carbon nanotube array with the substrate is located in an inertia environment or a vacuum environment. A light source irradiates the top surface of the carbon nanotube array, to make the carbon nanotube array radiate a visible light. A reflector is provided, and the visible light is reflected by the reflector. An imaging element images the visible light reflected by the reflector, to obtain an intensity distribution of the light source.
    Type: Application
    Filed: December 28, 2012
    Publication date: December 12, 2013
    Inventors: JUN ZHU, JING-LEI ZHU, KAI-LI JIANG, CHEN FENG, JI-QING WEI, GUO-FAN JIN, SHOU-SHAN FAN
  • Publication number: 20130327960
    Abstract: A system for measuring intensity distribution of light includes a carbon nanotube array located on a surface of a substrate, a reflector and an imaging element. The carbon nanotube array absorbs photons of a light source and radiates a visible light. The reflector is used to reflect the visible light, and the reflector is spaced from the carbon nanotube array. The carbon nanotube array is located between the reflector and the substrate. The imaging element is used to image the visible light. The imaging element is spaced from the substrate.
    Type: Application
    Filed: December 28, 2012
    Publication date: December 12, 2013
    Inventors: JUN ZHU, JING-LEI ZHU, KAI-LI JIANG, CHEN FENG, JI-QING WEI, GUO-FAN JIN, SHOU-SHAN FAN