Patents by Inventor Jia Zhen Zheng

Jia Zhen Zheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6972237
    Abstract: A method for manufacturing a heterojunction bipolar transistor is provided. An intrinsic collector structure is formed on a substrate. An extrinsic base structure partially overlaps the intrinsic collector structure. An intrinsic base structure is formed adjacent the intrinsic collector structure and under the extrinsic base structure. An emitter structure is formed adjacent the intrinsic base structure. An extrinsic collector structure is formed adjacent the intrinsic collector structure. A plurality of contacts is formed through an interlevel dielectric layer to the extrinsic collector structure, the extrinsic base structure, and the emitter structure.
    Type: Grant
    Filed: December 1, 2003
    Date of Patent: December 6, 2005
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Purakh Raj Verma, Shao-fu Sanford Chu, Lap Chan, Jia Zhen Zheng, Jian Xun Li
  • Patent number: 6924202
    Abstract: A heterojunction bipolar transistor (HBT), and manufacturing method therfor, comprising a semiconductor substrate having a collector region is provided. A base contact layer is formed over the collector region, and a base trench is formed in the base contact layer and the collector region. An intrinsic base structure having a sidewall portion and a bottom portion is formed in the base trench. An insulating spacer is formed over the sidewall portion of the intrinsic base structure, and an emitter structure is formed over the insulating spacer and the bottom portion of the intrinsic base structure. An interlevel dielectric layer is formed over the base contact layer and the emitter structure. Connections are formed through the interlevel dielectric layer to the collector region, the base contact layer, and the emitter structure. The intrinsic base structure is silicon and at least one of silicon-germanium, silicon-germanium-carbon, and combinations thereof.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: August 2, 2005
    Assignee: Chartered Semiconductor Manufacturing, Ltd.
    Inventors: Jian Xun Li, Lap Chan, Purakh Raj Verma, Jia Zhen Zheng, Shao-fu Sanford Chu
  • Patent number: 6908824
    Abstract: A method for manufacturing a lateral heterojunction bipolar transistor (HBT) is provided comprising a semiconductor substrate having a first insulating layer over the semiconductor substrate. A base trench is formed in a first silicon layer over the first insulating layer to form a collector layer over an exposed portion of the semiconductor substrate and an emitter layer over the first insulating layer. A semiconductive layer is formed on the sidewalls of the base trench to form a collector structure in contact with the collector layer and an emitter structure in contact with the emitter layer. A base structure is formed in the base trench. A plurality of connections is formed through an interlevel dielectric layer to the collector layer, the emitter layer, and the base structure. The base structure preferably is a compound semiconductive material of silicon and at least one of silicon-germanium, silicon-germanium-carbon, and combinations thereof.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: June 21, 2005
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Jian Xun Li, Lap Chan, Purakh Raj Verma, Jia Zhen Zheng, Shao-fu Sanford Chu
  • Patent number: 6903013
    Abstract: An improved method to deposit, by atomic layer deposition, ALD, a copper barrier and seed layer for electroless copper plating, filling trench and channel or tunnel openings in a damascene process, for the fabrication of interconnects and inductors, has been developed. A process flow outlining the method of the present invention is as follows: (1) formation of trenches and channels, (2) atomic layer deposition of copper barrier and seed, (3) electroless deposition of copper, (4) chemical mechanical polishing back of excess copper, and (5) barrier deposition, SiN, forming copper interconnects and inductors.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: June 7, 2005
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Lap Chan, Sanford Chu, Chit Hwei Ng, Yong Ju, Jia Zhen Zheng
  • Patent number: 6897111
    Abstract: A method for manufacturing an integrated circuit structure includes providing a semiconductor substrate and forming a horizontal semiconductor fin on top of the semiconductor substrate. An access transistor gate and a thyristor gate are then formed on top of the semiconductor substrate and in contact with the horizontal semiconductor fin. An access transistor is formed from at least a portion of the horizontal semiconductor fin and the access transistor gate. A thyristor is formed from at least a portion of the horizontal semiconductor fin and the thyristor gate, the access transistor being in contact with the thyristor.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: May 24, 2005
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Elgin Quek, Jia Zhen Zheng, Pradeep R. Yelehanka, Weining Li
  • Publication number: 20050089777
    Abstract: A method of forming small features, comprising the following steps. A substrate having a dielectric layer formed thereover is provided. A spacing layer is formed over the dielectric layer. The spacing layer has a thickness equal to the thickness of the small feature to be formed. A patterned, re-flowable masking layer is formed over the spacing layer. The masking layer having a first opening with a width “L”. The patterned, re-flowable masking layer is re-flowed to form a patterned, re-flowed masking layer having a re-flowed first opening with a lower width “l”. The re-flowed first opening lower width “l” being less than the pre-re-flowed first opening width “L”. The spacing layer is etched down to the dielectric layer using the patterned, re-flowed masking layer as a mask to form a second opening within the etched spacing layer having a width equal to the re-flowed first opening lower width “l”. Removing the patterned, re-flowed masking layer.
    Type: Application
    Filed: November 12, 2004
    Publication date: April 28, 2005
    Inventors: Chew-Hoe Ang, Eng Lim, Randall Cha, Jia-Zhen Zheng, Elgin Quek, Mei-Sheng Zhou, Daniel Yen
  • Patent number: 6881976
    Abstract: A BiCMOS semiconductor, and manufacturing method therefore, is provided. A semiconductor substrate having a collector region is provided. A pseudo-gate is formed over the collector region. An emitter window is formed in the pseudo-gate to form an extrinsic base structure. An undercut region beneath a portion of the pseudo-gate is formed to provide an intrinsic base structure in the undercut region. An emitter structure is formed in the emitter window over the intrinsic base structure. An interlevel dielectric layer is formed over the semiconductor substrate, and connections are formed through the interlevel dielectric layer to the collector region, the extrinsic base structure, and the emitter structure. The intrinsic base structure comprises a compound semiconductive material such as silicon and silicon-germanium, or silicon-germanium-carbon, or combinations thereof.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: April 19, 2005
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Jia Zhen Zheng, Lap Chan, Shao-fu Sanford Chu
  • Patent number: 6869884
    Abstract: A first method of reducing semiconductor device substrate effects comprising the following steps. O+ or O2+ are selectively implanted into a silicon substrate to form a silicon-damaged silicon oxide region. One or more devices are formed over the silicon substrate proximate the silicon-damaged silicon oxide region within at least one upper dielectric layer. A passivation layer is formed over the at least one upper dielectric layer. The passivation layer and the at least one upper dielectric layer are patterned to form a trench exposing a portion of the silicon substrate over the silicon-damaged silicon oxide region. The silicon-damaged silicon oxide region is selectively etched to form a channel continuous and contiguous with the trench whereby the channel reduces the substrate effects of the one or more semiconductor devices.
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: March 22, 2005
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Lap Chan, Sanford Chu, Chit Hwei Ng, Purakh Verma, Jia Zhen Zheng, Johnny Chew, Choon Beng Sia
  • Patent number: 6861317
    Abstract: A CMOS RF device and a method to fabricate said device with low gate contact resistance are described. Conventional MOS transistor is first formed with isolation regions, poly-silicon gate structure, sidewall spacers around poly gate, and implanted source/drain with lightly and heavily doped regions. A silicon dioxide layer such as TEOS is deposited, planarized with chemical mechanical polishing (CMP) to expose the gate and treated with dilute HF etchant to recess the silicon dioxide layer below the surface of the gate. Silicon nitride is then deposited and planarized with CMP and then etched except around the gates, using a oversize poly-silicon gate mask. Inter-level dielectric mask is then deposited, contact holes etched, and contact metal is deposited to form the transistor. During contact hole etch over poly-silicon gate, silicon nitride around the poly gate acts as an etch stop.
    Type: Grant
    Filed: September 17, 2003
    Date of Patent: March 1, 2005
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Purakh Raj Verma, Sanford Chu, Lap Chan, Yelehanka Pradeep, Kai Shao, Jia Zhen Zheng
  • Patent number: 6849481
    Abstract: A method for manufacturing an integrated circuit structure includes providing a semiconductor substrate and forming a thyristor thereon. The thyristor has at least four layers, with three P-N junctions therebetween. At least two of the layers are formed horizontally and at least two of the layers are formed vertically. A gate is formed adjacent at least one of the vertically formed layers. An access transistor is formed on the semiconductor substrate, and an interconnect is formed between the thyristor and the access transistor.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: February 1, 2005
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Elgin Quek, Pradeep Ramachandramurthy Yelehanka, Jia Zhen Zheng, Tommy Lai, Weining Li
  • Patent number: 6841441
    Abstract: A method of fabricating first and second gates comprising the following steps. A substrate having a gate dielectric layer formed thereover is provided. The substrate having a first gate region and a second gate region. A thin first gate layer is formed over the gate dielectric layer. The thin first gate layer within the second gate region is masked to expose a portion of the thin first gate layer within the first gate region. The exposed portion of the thin first gate layer is converted to a thin third gate layer portion. A second gate layer is formed over the thin first and third gate layer portions. The second gate layer and the first and third gate layer portions are patterned to form a first gate within first gate region and a second gate within second gate region.
    Type: Grant
    Filed: January 8, 2003
    Date of Patent: January 11, 2005
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Chew Hoe Ang, Eng-Hua Lim, Randall Cher Liang Cha, Jia Zhen Zheng, Elgin Quek, Mei-Sheng Zhou, Daniel Yen
  • Publication number: 20040266155
    Abstract: A method of fabricating an ultra-small semiconductor structure comprising the following steps. A substrate having a lower dielectric layer and an overlying upper dielectric layer formed thereover is provided. Using a lithography process having a lithography limit, the upper dielectric layer is patterned to form a first opening exposing a portion of the lower dielectric layer. The first opening having exposed side walls and a width equal to the lithography limit. Sidewall spacers having a lower width are formed over the exposed side walls of the first opening. Using the sidewall spacers as masks, the lower dielectric layer is patterned to form a lower opening having a width less than the first opening width. The patterned upper dielectric layer is removed. An ultra-small semiconductor structure is formed within the lower opening. The ultra-small semiconductor structure having a width equal to the lithography limit minus twice the lower width of the sidewall spacer.
    Type: Application
    Filed: June 30, 2003
    Publication date: December 30, 2004
    Applicant: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Chew Hoe Ang, Eng Hua Lim, Randall Cher Liang Cha, Jia Zhen Zheng, Elgin Quek, Mei Sheng Zhou, Daniel Yen
  • Patent number: 6830971
    Abstract: A process of fabricating high dielectric constant MIM capacitors. The high dielectric constant MIM capacitors are for both RF and analog circuit applications. For the high dielectric constant MIM capacitors, the metal is comprised of copper electrodes in a dual damascene process. The dielectric constant versus the total thickness of super lattices is controlled by the number of artificial layers. Dielectric constants near 900 can be achieved for 250 Angstrom thick super lattices. MBE, molecular beam epitaxy or ALCVD, atomic layer CVD techniques are employed for the layer growth processes.
    Type: Grant
    Filed: November 2, 2002
    Date of Patent: December 14, 2004
    Assignee: Chartered Semiconductor Manufacturing LTD
    Inventors: Subramanian Balakumar, Chew Hoe Ang, Jia Zhen Zheng, Paul Proctor
  • Patent number: 6828082
    Abstract: A method of forming small features, comprising the following steps. A substrate having a dielectric layer formed thereover is provided. A spacing layer is formed over the dielectric layer. The spacing layer has a thickness equal to the thickness of the small feature to be formed. A patterned, re-flowable masking layer is formed over the spacing layer. The masking layer having a first opening with a width “L”. The patterned, re-flowable masking layer is re-flowed to form a patterned, re-flowed masking layer having a re-flowed first opening with a lower width “1”. The re-flowed first opening lower width “1” being less than the pre-reflowed first opening width “L”. The spacing layer is etched down to the dielectric layer using the patterned, re-flowed masking layer as a mask to form a second opening within the etched spacing layer having a width equal to the re-flowed first opening lower width “1”. Removing the patterned, re-flowed masking layer.
    Type: Grant
    Filed: February 8, 2002
    Date of Patent: December 7, 2004
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Chew-Hoe Ang, Eng Hua Lim, Randall Cha, Jia-Zhen Zheng, Elgin Quek, Mei-Sheng Zhou, Daniel Yen
  • Patent number: 6821904
    Abstract: In accordance with the objectives of the invention a new method is provided for the creation of layers of gate oxide having an unequal thickness. Active surface regions are defined over the surface of a substrate, a thick layer of gate oxide is grown over the active surface. A selective etch is applied to the thick layer of gate oxide, selectively reducing the thickness of the thick layer of gate oxide to the required thickness of a thin layer of gate oxide. The layer of thick gate oxide is blocked from exposure. N2 atoms are implanted into the exposed surface of the thin layer of oxide, rapid thermal processing is performed and the blocking mask is removed from the surface of the thick layer of gate oxide. A high concentration of nitride has now been provided in the thin layer of gate oxide.
    Type: Grant
    Filed: July 30, 2002
    Date of Patent: November 23, 2004
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Yelehanka Ramachandramurthy Pradeep, Sanford Chu, Chit Hwei Ng, Jia Zhen Zheng, Purakh Verma
  • Publication number: 20040229457
    Abstract: An improved method to deposit, by atomic layer deposition, ALD, a copper barrier and seed layer for electroless copper plating, filling trench and channel or tunnel openings in a damascene process, for the fabrication of interconnects and inductors, has been developed. A process flow outlining the method of the present invention is as follows: (1) formation of trenches and channels, (2) atomic layer deposition of copper barrier and seed, (3) electroless deposition of copper, (4) chemical mechanical polishing back of excess copper, and (5) barrier deposition, SiN, forming copper interconnects and inductors.
    Type: Application
    Filed: May 16, 2003
    Publication date: November 18, 2004
    Applicant: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Lap Chan, Sanford Chu, Chit Hwei Ng, Yong Ju, Jia Zhen Zheng
  • Patent number: 6780691
    Abstract: A method for forming a transistor having an elevated source/drain structure is described. A gate electrode is formed overlying a substrate and isolated from the substrate by a gate dielectric layer. Isolation regions are formed in and on the substrate wherein the isolation regions have a stepped profile wherein an upper portion of the isolation regions partly overlaps and is offset from a lower portion of the isolation regions in the direction away from the gate electrode. Ions are implanted into the substrate between the gate electrode and the isolation regions to form source/drain extensions. Dielectric spacers are formed on sidewalls of the gate electrode and the isolation regions.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: August 24, 2004
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Randall Cher Liang Cha, Yeow Kheng Lim, Alex Kai Hung See, Jia Zhen Zheng
  • Publication number: 20040155269
    Abstract: An integrated circuit, and manufacturing method therefor, is provided. A gate dielectric and a gate are provided respectively on and over a semiconductor substrate. A junction is formed adjacent the gate dielectric and a shaped spacer is formed around the gate. A spacer is formed under the shaped spacer and a liner is formed under the spacer. A first dielectric layer is formed over the semiconductor substrate, the shaped spacer, the spacer, the liner, and the gate. A second dielectric layer is formed over the first dielectric layer. A local interconnect opening is formed in the second dielectric layer down to the first dielectric layer. The local interconnect opening in the first dielectric layer is opened to expose the junction in the semiconductor substrate and the first gate. The local interconnect openings in the first and second dielectric layers are filled with a conductive material.
    Type: Application
    Filed: February 7, 2003
    Publication date: August 12, 2004
    Applicant: Chartered Semiconductor Mfg. Ltd.
    Inventors: Pradeep Ramachandramurthy Yelehanka, Tong Qing Chen, Zhi Yong Han, Jia Zhen Zheng, Kelvin Ong, Tian Hao Gu, Syn Kean Cheah
  • Patent number: 6762085
    Abstract: A method of fabricating a CMOS device with reduced processing costs as a result of a reduction in photolithographic masking procedures, has been developed. The method features formation of L shaped silicon oxide spacers on the sides of gate structures, with a vertical spacer component located on the sides of the gate structure, and with horizontal spacer components located on the surface of the semiconductor substrate with a thick horizontal spacer component located adjacent to the gate structures, while a thinner horizontal spacer component is located adjacent to the thicker horizontal spacer component.
    Type: Grant
    Filed: October 1, 2002
    Date of Patent: July 13, 2004
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Jia Zhen Zheng, Soh Yun Siah, Liang Choo Hsia, Eng Hua Lim, Simon Chooi, Chew Hoe Ang
  • Publication number: 20040132271
    Abstract: A method of fabricating first and second gates comprising the following steps. A substrate having a gate dielectric layer formed thereover is provided. The substrate having a first gate region and a second gate region. A thin first gate layer is formed over the gate dielectric layer. The thin first gate layer within the second gate region is masked to expose a portion of the thin first gate layer within the first gate region. The exposed portion of the thin first gate layer is converted to a thin third gate layer portion. A second gate layer is formed over the thin first and third gate layer portions. The second gate layer and the first and third gate layer portions are patterned to form a first gate within first gate region and a second gate within second gate region.
    Type: Application
    Filed: January 8, 2003
    Publication date: July 8, 2004
    Applicant: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Chew Hoe Ang, Eng-Hua Lim, Randall Cher Liang Cha, Jia Zhen Zheng, Elgin Quek, Mei-Sheng Zhou, Daniel Yen