Patents by Inventor JIACHAO XU

JIACHAO XU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11541456
    Abstract: Provided is a FeCrCuTiV high-entropy alloy powder for laser melting deposition manufacturing and a preparation method thereof, in percent by weight, the composition of the high-entropy alloy powder is: chromium 17-20%; copper 22-25%; titanium 16-19%; vanadium 17-20%; and ferrum 19-22%, wherein by utilizing the solid solution effect of alloying elements such as Ti, V and Cu of the high-entropy alloy, it can effectively alleviate the differences in thermal expansion coefficient, melting point, elastic modulus, etc. of the tungsten/steel or tungsten/copper heterogeneous interface, can reduce the residual stress level at the heterogeneous interface during the laser melting deposition manufacturing process and avoid the precipitation of Laves phase, and can meet the manufacturing requirements of tungsten/steel and tungsten/copper heterogeneous components for fusion reactors.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: January 3, 2023
    Assignee: SOOCHOW UNIVERSITY
    Inventors: Zhixin Xia, Wenjuan Jiang, Tuo Shi, Lei Chen, Jiachao Xu
  • Publication number: 20220016705
    Abstract: Provided is a FeCrCuTiV high-entropy alloy powder for laser melting deposition manufacturing and a preparation method thereof, in percent by weight, the composition of the high-entropy alloy powder is: chromium 17-20%; copper 22-25%; titanium 16-19%; vanadium 17-20%; and ferrum 19-22%, wherein by utilizing the solid solution effect of alloying elements such as Ti, V and Cu of the high-entropy alloy, it can effectively alleviate the differences in thermal expansion coefficient, melting point, elastic modulus, etc. of the tungsten/steel or tungsten/copper heterogeneous interface, can reduce the residual stress level at the heterogeneous interface during the laser melting deposition manufacturing process and avoid the precipitation of Laves phase, and can meet the manufacturing requirements of tungsten/steel and tungsten/copper heterogeneous components for fusion reactors.
    Type: Application
    Filed: April 22, 2019
    Publication date: January 20, 2022
    Inventors: ZHIXIN XIA, WENJUAN JIANG, TUO SHI, LEI CHEN, JIACHAO XU