Patents by Inventor Jiading Fang

Jiading Fang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240161389
    Abstract: Systems and methods described herein support enhanced computer vision capabilities which may be applicable to, for example, autonomous vehicle operation. An example method includes generating a latent space and a decoder based on image data that includes multiple images, where each image has a different viewing frame of a scene. The method also includes generating a volumetric embedding that is representative of a novel viewing frame of the scene. The method includes decoding, with the decoder, the latent space using cross-attention with the volumetric embedding, and generating a novel viewing frame of the scene based on an output of the decoder.
    Type: Application
    Filed: August 3, 2023
    Publication date: May 16, 2024
    Applicants: Toyota Research Institute, Inc., Massachusetts Institute of Technology, Toyota Jidosha Kabushiki Kaisha
    Inventors: Vitor Guizilini, Rares A. Ambrus, Jiading Fang, Sergey Zakharov, Vincent Sitzmann, Igor Vasiljevic, Adrien Gaidon
  • Publication number: 20240161471
    Abstract: Systems and methods described herein support enhanced computer vision capabilities which may be applicable to, for example, autonomous vehicle operation. An example method includes generating, through training, a shared latent space based on (i) image data that include multiple images, where each image has a different viewing frame of a scene, and (ii) first and second types of embeddings, and training a decoder based on the first type of embeddings. The method also includes generating an embedding based on the first type of embeddings that is representative of a novel viewing frame of the scene, decoding, with the decoder, the shared latent space using cross-attention with the generated embedding, and generating the novel viewing frame of the scene based on an output of the decoder.
    Type: Application
    Filed: August 3, 2023
    Publication date: May 16, 2024
    Applicants: Toyota Research Institute, Inc., Massachusetts Institute of Technology, Toyota Jidosha Kabushiki Kaisha
    Inventors: Vitor Guizilini, Rares A. Ambrus, Jiading Fang, Sergey Zakharov, Vincent Sitzmann, Igor Vasiljevic, Adrien Gaidon
  • Publication number: 20240161510
    Abstract: Systems and methods described herein support enhanced computer vision capabilities which may be applicable to, for example, autonomous vehicle operation. An example method includes An example method includes training a shared latent space and a first decoder based on first image data that includes multiple images, and training the shared latent space and a second decoder based on second image data that includes multiple images. The method also includes generating a volumetric embedding that is representative of a novel viewing frame the first scene. Further, the method includes decoding, with the first decoders, the shared latent space with the volumetric embedding, and generating the novel viewing frame of the first scene based on the output of the first decoder.
    Type: Application
    Filed: August 3, 2023
    Publication date: May 16, 2024
    Applicants: Toyota Research Institute, Inc., Massachusetts Institute of Technology, Toyota Jidosha Kabushiki Kaisha
    Inventors: Vitor Guizilini, Rares A. Ambrus, Jiading Fang, Sergey Zakharov, Vincent Sitzmann, Igor Vasiljevic, Adrien Gaidon
  • Publication number: 20240153197
    Abstract: An example method includes generating embeddings of image data that includes multiple images, where each image has a different viewpoints of a scene, generating a latent space and a decoder, wherein the decoder receives embeddings as input to generate an output viewpoint, for each viewpoint in the image data, determining a volumetric rendering view synthesis loss and a multi-view photometric loss, and applying an optimization algorithm to the latent space and the decoder over a number of epochs until the volumetric rendering view synthesis loss is within a volumetric threshold and the multi-view photometric loss is within a multi-view threshold.
    Type: Application
    Filed: August 3, 2023
    Publication date: May 9, 2024
    Applicants: Toyota Research Institute, Inc., Massachusetts Institute of Technology, Toyota Jidosha Kabushiki Kaisha
    Inventors: Vitor Guizilini, Rares A. Ambrus, Jiading Fang, Sergey Zakharov, Vincent Sitzmann, Igor Vasiljevic, Adrien Gaidon
  • Publication number: 20240029286
    Abstract: A method of generating additional supervision data to improve learning of a geometrically-consistent latent scene representation with a geometric scene representation architecture is provided. The method includes receiving, with a computing device, a latent scene representation encoding a pointcloud from images of a scene captured by a plurality of cameras each with known intrinsics and poses, generating a virtual camera having a viewpoint different from viewpoints of the plurality of cameras, projecting information from the pointcloud onto the viewpoint of the virtual camera, and decoding the latent scene representation based on the virtual camera thereby generating an RGB image and depth map corresponding to the viewpoint of the virtual camera for implementation as additional supervision data.
    Type: Application
    Filed: February 16, 2023
    Publication date: January 25, 2024
    Applicants: Toyota Research Institute, Inc., Toyota Jidosha Kabushiki Kaisha, Toyota Technological Institute at Chicago
    Inventors: Vitor Guizilini, Igor Vasiljevic, Adrien D. Gaidon, Jiading Fang, Gregory Shakhnarovich, Matthew R. Walter, Rares A. Ambrus
  • Publication number: 20230080638
    Abstract: Systems and methods described herein relate to self-supervised learning of camera intrinsic parameters from a sequence of images. One embodiment produces a depth map from a current image frame captured by a camera; generates a point cloud from the depth map using a differentiable unprojection operation; produces a camera pose estimate from the current image frame and a context image frame; produces a warped point cloud based on the camera pose estimate; generates a warped image frame from the warped point cloud using a differentiable projection operation; compares the warped image frame with the context image frame to produce a self-supervised photometric loss; updates a set of estimated camera intrinsic parameters on a per-image-sequence basis using one or more gradients from the self-supervised photometric loss; and generates, based on a converged set of learned camera intrinsic parameters, a rectified image frame from an image frame captured by the camera.
    Type: Application
    Filed: March 11, 2022
    Publication date: March 16, 2023
    Applicants: Toyota Research Institute, Inc., Toyota Technological Institute at Chicago
    Inventors: Vitor Guizilini, Adrien David Gaidon, Rares A. Ambrus, Igor Vasiljevic, Jiading Fang, Gregory Shakhnarovich, Matthew R. Walter