Patents by Inventor Jiadong Gong

Jiadong Gong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11773468
    Abstract: Materials, methods and techniques disclosed and contemplated herein relate to aluminum alloys. Generally, multicomponent aluminum alloys include aluminum, magnesium, silicon, and, in some instances, iron and/or manganese, and include Mg2Si phase precipitates. Example multicomponent aluminum alloys disclosed and contemplated herein are particularly suited for use in additive manufacturing operations.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: October 3, 2023
    Assignee: QUESTEK INNOVATIONS LLC
    Inventors: Jiadong Gong, Gregory B. Olson, David R. Snyder
  • Patent number: 11401585
    Abstract: Materials, methods and techniques disclosed and contemplated herein relate to multicomponent aluminum alloys. Generally, multicomponent aluminum alloys include aluminum, nickel, zirconium, and rare earth elements, and include L12 precipitates having an Al3X composition. Rare earth elements used in example multicomponent aluminum alloys disclosed and contemplated herein include erbium (Er), zirconium (Zr), yttrium (Y), and ytterbium (Yb). Example multicomponent aluminum alloys disclosed and contemplated herein are particularly suited for use in additive manufacturing operations.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: August 2, 2022
    Assignee: QUESTEK INNOVATIONS LLC
    Inventors: Jiadong Gong, Gregory B. Olson, David R. Snyder, Thomas S. Kozmel, II
  • Patent number: 11118247
    Abstract: Alloys, processes for preparing the alloys, and articles including the alloys are provided. The alloys can include, by weight, about 4% to about 7% aluminum, 0% to about 0.2% carbon, about 7% to about 11% cobalt, about 5% to about 9% chromium, about 0.01% to about 0.2% hafnium, about 0.5% to about 2% molybdenum, 0% to about 1.5% rhenium, about 8% to about 10.5% tantalum, about 0.01% to about 0.5% titanium, and about 6% to about 10% tungsten, the balance essentially nickel and incidental elements and impurities.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: September 14, 2021
    Assignee: QUESTEK INNOVATIONS LLC
    Inventors: Jiadong Gong, David R. Snyder, Jason T. Sebastian
  • Publication number: 20210254202
    Abstract: Materials, methods and techniques relate to steel alloys. In some instances, steel alloys can include chromium, molybdenum, vanadium, copper, nickel, manganese, niobium, aluminum, and iron. In some instances, exemplary steel alloys are subjected to solution carburizing, tempering, and/or plasma nitriding. Exemplary steel alloys are typically precipitation strengthened carburizable and nitridable steel alloys.
    Type: Application
    Filed: February 19, 2021
    Publication date: August 19, 2021
    Inventors: Jiadong Gong, Ida Berglund, Amit Behera, Greg Olson
  • Patent number: 10941473
    Abstract: Aluminum alloys are provided. The alloys can include one or more of zinc, magnesium, copper, zirconium, yttrium, erbium, ytterbium, scandium, silver, and the balance of aluminum and incidental elements and impurities. The alloys can be used for additive manufacturing of various articles, such as aircraft components.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: March 9, 2021
    Assignee: QUESTEK INNOVATIONS LLC
    Inventors: David R. Snyder, James Saal, Jason T. Sebastian, Gregory B. Olson, Jiadong Gong
  • Publication number: 20200385845
    Abstract: Materials, methods and techniques disclosed and contemplated herein relate to aluminum alloys. Generally, multicomponent aluminum alloys include aluminum, magnesium, silicon, and, in some instances, iron and/or manganese, and include Mg2Si phase precipitates. Example multicomponent aluminum alloys disclosed and contemplated herein are particularly suited for use in additive manufacturing operations.
    Type: Application
    Filed: November 28, 2018
    Publication date: December 10, 2020
    Inventors: Jiadong Gong, Gregory B. Olson, David R. Snyder
  • Publication number: 20200370149
    Abstract: Materials, methods and techniques disclosed and contemplated herein relate to multicomponent aluminum alloys. Generally, multicomponent aluminum alloys include aluminum, nickel, zirconium, and rare earth elements, and include L12 precipitates having an Al3X composition. Rare earth elements used in example multicomponent aluminum alloys disclosed and contemplated herein include erbium (Er), zirconium (Zr), yttrium (Y), and ytterbium (Yb). Example multicomponent aluminum alloys disclosed and contemplated herein are particularly suited for use in additive manufacturing operations.
    Type: Application
    Filed: November 28, 2018
    Publication date: November 26, 2020
    Inventors: Jiadong Gong, Gregory B. Olson, David R. Snyder, Thomas S. Kozmel, II
  • Patent number: 10597757
    Abstract: Alloys, processes for preparing the alloys, and articles including the alloys are provided. The alloys can include, by weight, about 0.01% to about 1% vanadium, 0% to about 0.04% carbon, 0% to about 8% niobium, 0% to about 1% titanium, 0% to about 0.04% boron, 0% to about 1% tungsten, 0% to about 1% tantalum, 0% to about 1% hafnium, and 0% to about 1% ruthenium, the balance essentially molybdenum and incidental elements and impurities.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: March 24, 2020
    Assignee: QUESTEK INNOVATIONS LLC
    Inventors: Jiadong Gong, David R. Snyder, Jason T. Sebastian, William Arthur Counts, Abhijeet Misra, James A. Wright
  • Publication number: 20200048743
    Abstract: Alloys, processes for preparing the alloys, and articles including the alloys are provided. The alloys can include, by weight, about 4% to about 7% aluminum, 0% to about 0.2% carbon, about 7% to about 11% cobalt, about 5% to about 9% chromium, about 0.01% to about 0.2% hafnium, about 0.5% to about 2% molybdenum, 0% to about 1.5% rhenium, about 8% to about 10.5% tantalum, about 0.01% to about 0.5% titanium, and about 6% to about 10% tungsten, the balance essentially nickel and incidental elements and impurities.
    Type: Application
    Filed: March 13, 2019
    Publication date: February 13, 2020
    Inventors: Jiadong Gong, David R. Snyder, Jason T. Sebastian
  • Patent number: 10519529
    Abstract: An alloy includes, in weight percentage, about 20.0% to about 25.0% chromium, 0% to about 5.0% molybdenum, about 3.0% to about 15.0% cobalt, about 1.5% to about 6.0% niobium, about 1.0% to about 3.0% tantalum, about 1.0% to about 5.0% tungsten, 0% to about 1.0% aluminum, 0% to about 0.05% carbon, 0% to about 0.01% titanium, and the balance nickel and incidental elements and impurities, wherein the alloy includes L12 and D022 precipitates in a compact morphology.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: December 31, 2019
    Assignee: QUESTEK INNOVATIONS LLC
    Inventors: James A. Wright, Weiming Huang, Abhijeet Misra, Jeremy Hoishun Li, Jiadong Gong, Dana J. Frankel
  • Patent number: 10351922
    Abstract: Alloys, a process for preparing the alloys, and manufactured articles including the alloys are described herein. The alloys include, by weight, about 11.5% to about 14.5% chromium, about 0.01% to about 3.0% nickel, about 0.1% to about 1.0% copper, about 0.1% to about 0.2% carbon, about 0.01% to about 0.1% niobium, 0% to about 5% cobalt, 0% to about 3.0% molybdenum, and 0% to about 0.5% titanium, the balance essentially iron and incidental elements and impurities.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: July 16, 2019
    Assignee: QuesTek Innovations LLC
    Inventors: David R. Snyder, Jiadong Gong, Jason T. Sebastian, James A. Wright, Herng-Jeng Jou, Zechariah Feinberg
  • Patent number: 10351921
    Abstract: A martensitic stainless steel alloy is strengthened by copper-nucleated nitride precipitates. The alloy includes, in combination by weight percent, about 10.0 to about 12.5 Cr, about 2.0 to about 7.5 Ni, up to about 17.0 Co, about 0.6 to about 1.5 Mo, about 0.5 to about 2.3 Cu, up to about 0.6 Mn, up to about 0.4 Si, about 0.05 to about 0.15 V, up to about 0.10 N, up to about 0.035 C, up to about 0.01 W, and the balance Fe and incidental elements and impurities. The nitride precipitates may be enriched by one or more transition metals. A case hardened, corrosion resistant variant has a reduced weight percent of Ni, enabling increased use of Cr, and decreased Co.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: July 16, 2019
    Assignee: QuesTek Innovations LLC
    Inventors: David R. Snyder, Jiadong Gong, Jason T. Sebastian, James A. Wright, Herng-Jeng Jou, Zechariah Feinberg
  • Publication number: 20180245190
    Abstract: Aluminum alloys are provided. The alloys can include one or more of zinc, magnesium, copper, zirconium, yttrium, erbium, ytterbium, scandium, silver, and the balance of aluminum and incidental elements and impurities. The alloys can be used for additive manufacturing of various articles, such as aircraft components.
    Type: Application
    Filed: September 2, 2016
    Publication date: August 30, 2018
    Inventors: David R. Snyder, James Saal, Jason T. Sebastian, Gregory B. Olson, Jiadong Gong
  • Publication number: 20180135143
    Abstract: A martensitic stainless steel alloy is strengthened by copper-nucleated nitride precipitates. The alloy includes, in combination by weight percent, about 10.0 to about 12.5 Cr, about 2.0 to about 7.5 Ni, up to about 17.0 Co, about 0.6 to about 1.5 Mo, about 0.5 to about 2.3 Cu, up to about 0.6 Mn, up to about 0.4 Si, about 0.05 to about 0.15 V, up to about 0.10 N, up to about 0.035 C, up to about 0.01 W, and the balance Fe and incidental elements and impurities. The nitride precipitates may be enriched by one or more transition metals. A case hardened, corrosion resistant variant has a reduced weight percent of Ni, enabling increased use of Cr, and decreased Co.
    Type: Application
    Filed: November 21, 2017
    Publication date: May 17, 2018
    Inventors: David R. Snyder, Jiadong Gong, Jason T. Sebastian, James A. Wright, Herng-Jeng Jou, Zechariah Feinberg
  • Patent number: 9914987
    Abstract: A martensitic stainless steel alloy is strengthened by copper-nucleated nitride precipitates. The alloy includes, in combination by weight percent, about 10.0 to about 12.5 Cr, about 2.0 to about 7.5 Ni, up to about 17.0 Co, about 0.6 to about 1.5 Mo, about 0.5 to about 2.3 Cu, up to about 0.6 Mn, up to about 0.4 Si, about 0.05 to about 0.15 V, up to about 0.10 N, up to about 0.035 C, up to about 0.01 W, and the balance Fe and incidental elements and impurities. The nitride precipitates may be enriched by one or more transition metals. A case hardened, corrosion resistant variant has a reduced weight percent of Ni, enabling increased use of Cr, and decreased Co.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: March 13, 2018
    Assignee: QuesTek Innovations LLC
    Inventors: David R. Snyder, Jiadong Gong, Jason T. Sebastian, James A. Wright, Herng-Jeng Jou, Zechariah Feinberg
  • Publication number: 20170044646
    Abstract: Alloys, processes for preparing the alloys, and articles including the alloys are provided. The alloys can include, by weight, about 0.01% to about 1% vanadium, 0% to about 0.04% carbon, 0% to about 8% niobium, 0% to about 1% titanium, 0% to about 0.04% boron, 0% to about 1% tungsten, 0% to about 1% tantalum, 0% to about 1% hafnium, and 0% to about 1% ruthenium, the balance essentially molybdenum and incidental elements and impurities.
    Type: Application
    Filed: April 14, 2015
    Publication date: February 16, 2017
    Inventors: Jiadong Gong, David R. Snyder, Jason T. Sebastian, William Arthur Counts, Abhijeet Misra, James A. Wright
  • Publication number: 20170016091
    Abstract: Alloys, processes for preparing the alloys, and articles including the alloys are provided. The alloys can include, by weight, about 4% to about 7% aluminum, 0% to about 0.2% carbon, about 7% to about 11% cobalt, about 5% to about 9% chromium, about 0.01% to about 0.2% hafnium, about 0.5% to about 2% molybdenum, 0% to about 1.5% rhenium, about 8% to about 10.5% tantalum, about 0.01% to about 0.5% titanium, and about 6% to about 10% tungsten, the balance essentially nickel and incidental elements and impurities.
    Type: Application
    Filed: May 27, 2015
    Publication date: January 19, 2017
    Inventors: Jiadong Gong, David R. Snyder, Jason T. Sebastian
  • Publication number: 20160289800
    Abstract: Alloys, processes for preparing the alloys, and manufactured articles including the alloys are described. The alloys include, by weight, about 10% to about 20% chromium, about 4% to about 7% titanium, about 1% to about 3% vanadium, 0% to about 10% iron, less than about 7% nickel, 0% to about 10% tungsten, less than about 3% molybdenum, and the balance of weight percent including cobalt and incidental elements and impurities.
    Type: Application
    Filed: August 28, 2013
    Publication date: October 6, 2016
    Inventors: James A. Wright, Jason T. Sebastian, David R. Snyder, Jiadong Gong, Jeremy Hoishun Li
  • Publication number: 20160040262
    Abstract: Alloys, a process for preparing the alloys, and manufactured articles including the alloys are described herein. The alloys include, by weight, about 11.5% to about 14.5% chromium, about 0.01% to about 3.0% nickel, about 0.1% to about 1.0% copper, about 0.1% to about 0.2% carbon, about 0.01% to about 0.1% niobium, 0% to about 5% cobalt, 0% to about 3.0% molybdenum, and 0% to about 0.
    Type: Application
    Filed: April 21, 2015
    Publication date: February 11, 2016
    Inventors: David R. Snyder, Jiadong Gong, Jason T. Sebastian, James A. Wright, Herng-Jeng Jou, Zechariah Feinberg
  • Publication number: 20150284817
    Abstract: A martensitic stainless steel alloy is strengthened by copper-nucleated nitride precipitates. The alloy includes, in combination by weight percent, about 10.0 to about 12.5 Cr, about 2.0 to about 7.5 Ni, up to about 17.0 Co, about 0.6 to about 1.5 Mo, about 0.5 to about 2.3 Cu, up to about 0.6 Mn, up to about 0.4 Si, about 0.05 to about 0.15 V, up to about 0.10 N, up to about 0.035 C, up to about 0.01 W, and the balance Fe and incidental elements and impurities. The nitride precipitates may be enriched by one or more transition metals. A case hardened, corrosion resistant variant has a reduced weight percent of Ni, enabling increased use of Cr, and decreased Co.
    Type: Application
    Filed: December 18, 2014
    Publication date: October 8, 2015
    Inventors: David R. Snyder, Jiadong Gong, Jason T. Sebastian, James A. Wright, Herng-Jeng Jou, Zechariah Feinberg