Patents by Inventor Jiahui Guan

Jiahui Guan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11404145
    Abstract: Systems, apparatus, instructions, and methods for medical machine time-series event data processing are disclosed. An example time series event data processing apparatus includes memory storing instructions and one-dimensional time series healthcare-related data; and at least one processor. The example at least one processor is to: execute artificial intelligence model(s) trained on aggregated time series data to at least one of a) predict a future medical machine event, b) detect a medical machine event, or c) classify the medical machine event using the one-dimensional time series healthcare-related data; when the artificial intelligence model(s) are executed to predict the future medical machine event, output an alert related to the predicted future medical machine event to trigger a next action; and when the artificial intelligence model(s) are executed to detect and/or classify the medical machine event, label the medical machine event and output the labeled event to trigger the next action.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: August 2, 2022
    Assignee: GE Precision Healthcare LLC
    Inventors: Venkata Ratna Saripalli, Gopal Avinash, Min Zhang, Ravi Soni, Jiahui Guan, Dibyajyoti Pati, Zili Ma
  • Publication number: 20200337648
    Abstract: Systems, apparatus, instructions, and methods for medical machine time-series event data processing are disclosed. An example time series event data processing apparatus includes memory storing instructions and one-dimensional time series healthcare-related data; and at least one processor. The example at least one processor is to: execute artificial intelligence model(s) trained on aggregated time series data to at least one of a) predict a future medical machine event, b) detect a medical machine event, or c) classify the medical machine event using the one-dimensional time series healthcare-related data; when the artificial intelligence model(s) are executed to predict the future medical machine event, output an alert related to the predicted future medical machine event to trigger a next action; and when the artificial intelligence model(s) are executed to detect and/or classify the medical machine event, label the medical machine event and output the labeled event to trigger the next action.
    Type: Application
    Filed: November 27, 2019
    Publication date: October 29, 2020
    Inventors: Venkata Ratna Saripalli, Gopal Avinash, Min Zhang, Ravi Soni, Jiahui Guan, Dibyajyoti Pati, Zili Ma
  • Publication number: 20200342968
    Abstract: Systems, apparatus, instructions, and methods for medical machine time-series event data processing are disclosed. An example apparatus includes a data processor to process one-dimensional data captured over time with respect to patient(s). The example apparatus includes a visualization processor to transform the processed data into graphical representations and to cluster the graphical representations including the first graphical representation into at least first and second blocks arranged with respect to an indicator of a criterion to provide a visual comparison of the first block and the second block with respect to the criterion. The example apparatus includes an interaction processor to facilitate interaction, via the graphical user interface, with the first and second blocks of graphical representations to extract a data set for processing from at least a subset of the first and second blocks.
    Type: Application
    Filed: October 17, 2019
    Publication date: October 29, 2020
    Inventors: Gopal B. Avinash, Qian Zhao, Zili Ma, Dibyajyoti Pati, Venkata Ratnam Saripalli, Ravi Soni, Jiahui Guan, Min Zhang
  • Publication number: 20200342362
    Abstract: Systems, apparatus, instructions, and methods for medical machine time-series event data generation are disclosed. An example synthetic time series data generation apparatus is to generate a synthetic data set including multi-channel time-series data and associated annotation using a first artificial intelligence network model. The example apparatus is to analyze the synthetic data set with respect to a real data set using a second artificial intelligence network model. When the second artificial intelligence network model classifies the synthetic data set as a first classification, the example apparatus is to adjust the first artificial intelligence network model using feedback from the second artificial intelligence network model. When the second artificial intelligence network model classifies the synthetic data set as a second classification, the example apparatus is to output the synthetic data set.
    Type: Application
    Filed: November 20, 2019
    Publication date: October 29, 2020
    Inventors: Ravi Soni, Min Zhang, Gopal B. Avinash, Venkata Ratnam Saripalli, Jiahui Guan, Dibyajyoti Pati, Zili Ma
  • Publication number: 20200272905
    Abstract: Systems and computer-implemented methods for facilitating automated compression of artificial neural networks using an iterative hybrid reinforcement learning approach are provided. In various embodiments, a compression architecture can receive as input an original neural network to be compressed. The architecture can perform one or more compression actions to compress the original neural network into a compressed neural network. The architecture can then generate a reward signal quantifying how well the original neural network was compressed. In (?)-proportion of compression iterations/episodes, where ??[0,1], the reward signal can be computed in model-free fashion based on a compression ratio and accuracy ratio of the compressed neural network. In (1??)-proportion of compression iterations/episodes, the reward signal can be predicted in model-based fashion using a compression model learned/trained on the reward signals computed in model-free fashion.
    Type: Application
    Filed: June 24, 2019
    Publication date: August 27, 2020
    Inventors: Venkata Ratnam Saripalli, Ravi Soni, Jiahui Guan, Gopal B. Avinash