Patents by Inventor Jian-Ci Lin

Jian-Ci Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230064918
    Abstract: A slurry composition, a semiconductor structure and a method for forming a semiconductor structure are provided. The slurry composition includes a slurry and a precipitant dispensed in the slurry. The semiconductor structure comprises a blocking layer including at least one element of the precipitant. The method includes using the slurry composition with the precipitant to polish a conductive layer and causing the precipitant to flow into the gap.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Inventors: CHUN-WEI HSU, CHIH-CHIEH CHANG, YI-SHENG LIN, JIAN-CI LIN, JENG-CHI LIN, TING-HSUN CHANG, LIANG-GUANG CHEN, JI CUI, KEI-WEI CHEN, CHI-JEN LIU
  • Patent number: 11532514
    Abstract: A structure and a formation method of a semiconductor device are provided. The method includes forming a conductive feature over a semiconductor substrate and forming a dielectric layer over the conductive feature. The method also includes forming an opening in the dielectric layer to expose the conductive feature. The method further includes forming a conductive material to overfill the opening. In addition, the method includes thinning the conductive material using a chemical mechanical polishing process. A slurry used in the chemical mechanical polishing process includes an iron-containing oxidizer that oxidizes a portion of the conductive material.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: December 20, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Chieh Wu, Kuo-Hsiu Wei, Kei-Wei Chen, Tang-Kuei Chang, Chia Hsuan Lee, Jian-Ci Lin
  • Publication number: 20220384245
    Abstract: Methods of forming a slurry and methods of performing a chemical mechanical polishing (CMP) process utilized in manufacturing semiconductor devices, as described herein, may be performed on semiconductor devices including integrated contact structures with ruthenium (Ru) plug contacts down to a semiconductor substrate. The slurry may be formed by mixing a first abrasive, a second abrasive, and a reactant with a solvent. The first abrasive may include a first particulate including titanium dioxide (TiO2) particles and the second abrasive may include a second particulate that is different from the first particulate. The slurry may be used in a CMP process for removing ruthenium (Ru) materials and dielectric materials from a surface of a workpiece resulting in better WiD loading and planarization of the surface for a flat profile.
    Type: Application
    Filed: August 5, 2022
    Publication date: December 1, 2022
    Inventors: Chia Hsuan Lee, Chun-Wei Hsu, Chia-Wei Ho, Chi-Hsiang Shen, Li-Chieh Wu, Jian-Ci Lin, Chi-Jen Liu, Yi-Sheng Lin, Yang-Chun Cheng, Liang-Guang Chen, Kuo-Hsiu Wei, Kei-Wei Chen
  • Patent number: 11482450
    Abstract: Methods of forming a slurry and methods of performing a chemical mechanical polishing (CMP) process utilized in manufacturing semiconductor devices, as described herein, may be performed on semiconductor devices including integrated contact structures with ruthenium (Ru) plug contacts down to a semiconductor substrate. The slurry may be formed by mixing a first abrasive, a second abrasive, and a reactant with a solvent. The first abrasive may include a first particulate including titanium dioxide (TiO2) particles and the second abrasive may include a second particulate that is different from the first particulate. The slurry may be used in a CMP process for removing ruthenium (Ru) materials and dielectric materials from a surface of a workpiece resulting in better WiD loading and planarization of the surface for a flat profile.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: October 25, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chia Hsuan Lee, Chun-Wei Hsu, Chia-Wei Ho, Chi-Hsiang Shen, Li-Chieh Wu, Jian-Ci Lin, Chi-Jen Liu, Yi-Sheng Lin, Yang-Chun Cheng, Liang-Guang Chen, Kuo-Hsiu Wei, Kei-Wei Chen
  • Publication number: 20210210383
    Abstract: A structure and a formation method of a semiconductor device are provided. The method includes forming a conductive feature over a semiconductor substrate and forming a dielectric layer over the conductive feature. The method also includes forming an opening in the dielectric layer to expose the conductive feature. The method further includes forming a conductive material to overfill the opening. In addition, the method includes thinning the conductive material using a chemical mechanical polishing process. A slurry used in the chemical mechanical polishing process includes an iron-containing oxidizer that oxidizes a portion of the conductive material.
    Type: Application
    Filed: March 19, 2021
    Publication date: July 8, 2021
    Inventors: Li-Chieh Wu, Kuo-Hsiu Wei, Kei-Wei Chen, Tang-Kuei Chang, Chia Hsuan Lee, Jian-Ci Lin
  • Publication number: 20210183688
    Abstract: Methods of forming a slurry and methods of performing a chemical mechanical polishing (CMP) process utilized in manufacturing semiconductor devices, as described herein, may be performed on semiconductor devices including integrated contact structures with ruthenium (Ru) plug contacts down to a semiconductor substrate. The slurry may be formed by mixing a first abrasive, a second abrasive, and a reactant with a solvent. The first abrasive may include a first particulate including titanium dioxide (TiO2) particles and the second abrasive may include a second particulate that is different from the first particulate. The slurry may be used in a CMP process for removing ruthenium (Ru) materials and dielectric materials from a surface of a workpiece resulting in better WiD loading and planarization of the surface for a flat profile.
    Type: Application
    Filed: February 26, 2021
    Publication date: June 17, 2021
    Inventors: Chia Hsuan Lee, Chun-Wei Hsu, Chia-Wei Ho, Chi-Hsiang Shen, Li-Chieh Wu, Jian-Ci Lin, Chi-Jen Liu, Yi-Sheng Lin, Yang-Chun Cheng, Liang-Guang Chen, Kuo-Hsiu Wei, Kei-Wei Chen
  • Patent number: 10957587
    Abstract: A structure and a formation method of a semiconductor device are provided. The method includes forming a conductive feature over a semiconductor substrate and forming a dielectric layer over the conductive feature. The method also includes forming an opening in the dielectric layer to expose the conductive feature. The method further includes forming a conductive material to overfill the opening. In addition, the method includes thinning the conductive material using a chemical mechanical polishing process. A slurry used in the chemical mechanical polishing process includes an iron-containing oxidizer that oxidizes a portion of the conductive material.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: March 23, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Chieh Wu, Kuo-Hsiu Wei, Kei-Wei Chen, Tang-Kuei Chang, Chia Hsuan Lee, Jian-Ci Lin
  • Patent number: 10937691
    Abstract: Methods of forming a slurry and methods of performing a chemical mechanical polishing (CMP) process utilized in manufacturing semiconductor devices, as described herein, may be performed on semiconductor devices including integrated contact structures with ruthenium (Ru) plug contacts down to a semiconductor substrate. The slurry may be formed by mixing a first abrasive, a second abrasive, and a reactant with a solvent. The first abrasive may include a first particulate including titanium dioxide (TiO2) particles and the second abrasive may include a second particulate that is different from the first particulate. The slurry may be used in a CMP process for removing ruthenium (Ru) materials and dielectric materials from a surface of a workpiece resulting in better WiD loading and planarization of the surface for a flat profile.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: March 2, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia Hsuan Lee, Chun-Wei Hsu, Chia-Wei Ho, Chi-Hsiang Shen, Li-Chieh Wu, Jian-Ci Lin, Chi-Jen Liu, Yi-Sheng Lin, Yang-Chun Cheng, Liang-Guang Chen, Kuo-Hsiu Wei, Kei-Wei Chen
  • Publication number: 20200105580
    Abstract: Methods of forming a slurry and methods of performing a chemical mechanical polishing (CMP) process utilized in manufacturing semiconductor devices, as described herein, may be performed on semiconductor devices including integrated contact structures with ruthenium (Ru) plug contacts down to a semiconductor substrate. The slurry may be formed by mixing a first abrasive, a second abrasive, and a reactant with a solvent. The first abrasive may include a first particulate including titanium dioxide (TiO2) particles and the second abrasive may include a second particulate that is different from the first particulate. The slurry may be used in a CMP process for removing ruthenium (Ru) materials and dielectric materials from a surface of a workpiece resulting in better WiD loading and planarization of the surface for a flat profile.
    Type: Application
    Filed: September 3, 2019
    Publication date: April 2, 2020
    Inventors: Chia Hsuan Lee, Chun-Wei Hsu, Chia-Wei Ho, Chi-Hsiang Shen, Li-Chieh Wu, Jian-Ci Lin, Chi-Jen Liu, Yi-Sheng Lin, Yang-Chun Cheng, Liang-Guang Chen, Kuo-Hsiu Wei, Kei-Wei Chen
  • Publication number: 20200043786
    Abstract: A structure and a formation method of a semiconductor device are provided. The method includes forming a conductive feature over a semiconductor substrate and forming a dielectric layer over the conductive feature. The method also includes forming an opening in the dielectric layer to expose the conductive feature. The method further includes forming a conductive material to overfill the opening. In addition, the method includes thinning the conductive material using a chemical mechanical polishing process. A slurry used in the chemical mechanical polishing process includes an iron-containing oxidizer that oxidizes a portion of the conductive material.
    Type: Application
    Filed: June 24, 2019
    Publication date: February 6, 2020
    Inventors: Li-Chieh Wu, Kuo-Hsiu Wei, Kei-Wei Chen, Tang-Kuei Chang, Chia Hsuan Lee, Jian-Ci Lin
  • Patent number: 10224152
    Abstract: An electrolyte for a dye-sensitized solar cell is disclosed. The electrolyte includes a solvent being one selected from a group consisting of gamma-butyrolactone (gBL), propylene carbonate (PC) and 3-methoxypropionitrile (MPN), and a polymer mixed with the solvent to form an electrolyte solution, wherein when the solvent is one of gBL and PC, the polymer is one selected from a group consisting of polyacrylonitrile (PAN), polyvinyl acetate (PVA), poly(acrylonitrile-co-vinyl acetate) (PAN-VA) and a combination thereof; and when the solvent is MPN, the polymer includes one of a mixture of poly(ethylene oxide (PEO) and polyvinylidene fluoride (PVDF), and a mixture of PEO and polymethylmethacrylate (PMMA).
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: March 5, 2019
    Assignee: National Cheng Kung University
    Inventors: Yuh-Lang Lee, Sung-Chuan Su, Wei-Ning Hung, Jian-Ci Lin
  • Publication number: 20170053747
    Abstract: An electrolyte for a dye-sensitized solar cell is disclosed. The electrolyte includes a solvent being one selected from a group consisting of gamma-butyrolactone (gBL), propylene carbonate (PC) and 3-methoxypropionitrile (MPN), and a polymer mixed with the solvent to form an electrolyte solution, wherein when the solvent is one of gBL and PC, the polymer is one selected from a group consisting of polyacrylonitrile (PAN), polyvinyl acetate (PVA), poly(acrylonitrile-co-vinyl acetate) (PAN-VA) and a combination thereof; and when the solvent is MPN, the polymer includes one of a mixture of poly(ethylene oxide (PEO) and polyvinylidene fluoride (PVDF), and a mixture of PEO and polymethylmethacrylate (PMMA).
    Type: Application
    Filed: August 19, 2016
    Publication date: February 23, 2017
    Inventors: Yuh-Lang Lee, Sung-Chuan Su, Wei-Ning Hung, Jian-Ci Lin