Patents by Inventor Jian-Jang Huang

Jian-Jang Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190187148
    Abstract: Methods, systems, and devices are disclosed for detecting molecular interactions.
    Type: Application
    Filed: February 19, 2019
    Publication date: June 20, 2019
    Inventors: Yu-Hwa Lo, Tiantian Zhang, Jian Jang Huang, Shou-Hao Wu
  • Publication number: 20160252517
    Abstract: Methods, systems, and devices are disclosed for detecting molecular interactions.
    Type: Application
    Filed: October 10, 2014
    Publication date: September 1, 2016
    Inventors: Yu-Hwa Lo, Tiantian Zhang, Jian Jang Huang, Shou-Hao Wu
  • Patent number: 9425176
    Abstract: A semiconductor device comprises a substrate, a patterned conductive layer, a first transistor structure and a second transistor structure. The patterned conductive layer is formed on the substrate. The first transistor structure includes a first source, a first gate and a first drain and is electrically connected to the patterned conductive layer by flip-chip bonding. The second transistor structure includes a second source, a second gate and a second drain and is electrically connected to the patterned conductive layer by flip-chip bonding. The first gate is electrically connected to the second source through the patterned conductive layer, and the first source is electrically connected to the second drain through the patterned conductive layer.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: August 23, 2016
    Assignee: NATIONAL TAIWAN UNIVERSITY
    Inventors: Jian-Jang Huang, Liang-Yu Su, Chih-Hao Wang
  • Publication number: 20160190114
    Abstract: A semiconductor device comprises a substrate, a patterned conductive layer, a first transistor structure and a second transistor structure. The patterned conductive layer is formed on the substrate. The first transistor structure includes a first source, a first gate and a first drain and is electrically connected to the patterned conductive layer by flip-chip bonding. The second transistor structure includes a second source, a second gate and a second drain and is electrically connected to the patterned conductive layer by flip-chip bonding. The first gate is electrically connected to the second source through the patterned conductive layer, and the first source is electrically connected to the second drain through the patterned conductive layer.
    Type: Application
    Filed: December 31, 2014
    Publication date: June 30, 2016
    Inventors: Jian-Jang HUANG, Liang-Yu SU, Chih-Hao WANG
  • Publication number: 20140295573
    Abstract: A biosensor with a dual gate structure is disclosed herein. The biosensor comprises: a transistor, a sensing pad, and a plurality of nanostructures. The sensing pad has a conductive area working as another gate and neighboring to the channel layer of the transistor, and a sensing area extended outward from the conductive area to be far away from the channel layer of the transistor, wherein the gate and the conductive area of the sensing pad are separated from each other by the channel layer. The plurality of nanostructures are utilized to bind a first protein to generate a drain current value, when the first protein is combined with the target protein and another drain current value is generated, whereby a variation between the two drain current values is calculated to obtain the concentration of the target protein in the protein solution.
    Type: Application
    Filed: March 26, 2013
    Publication date: October 2, 2014
    Applicant: National Taiwan University
    Inventors: Jian-jang HUANG, Tsung-Lin YANG, Yi-Chun SHEN, Chun-Hsu YANG
  • Patent number: 8053836
    Abstract: An oxide semiconductor thin-film transistor, comprising: a source electrode and a drain electrode formed on a substrate; a composite semiconductor active layer formed between the source electrode and the drain electrode; a gate dielectric layer formed on the source electrode, the composite semiconductor active layer and the drain electrode; and a gate electrode formed on the gate dielectric layer and corresponding to the composite semiconductor active layer; wherein the composite semiconductor active layer comprises a low carrier-concentration first oxide semiconductor layer and a high carrier-concentration second oxide semiconductor layer.
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: November 8, 2011
    Assignees: Industrial Technology Research Institute, National Taiwan University
    Inventors: Yung-Hui Yeh, Chun-Cheng Cheng, Jian-Jang Huang, Shih-Hua Hsiao, Kuang-Chung Liu
  • Publication number: 20110100442
    Abstract: A structure of a solar cell. The structure of the solar cell includes a substrate, a graded layer and a semiconductor layer. The graded layer is disposed on the substrate. The graded layer is made from materials including the first material and the second material, and includes at least one thin film. One of the at least one thin film includes a mixture of at least the first material and the second material at a mixture ratio. The mixture forms a bandgap of the at least one thin film. The semiconductor layer is disposed on the graded layer.
    Type: Application
    Filed: August 27, 2010
    Publication date: May 5, 2011
    Applicant: NATIONAL TAIWAN UNIVERSITY
    Inventors: Jian-Jang Huang, Cheng-Pin Chen, Pei-Hsuan Lin
  • Publication number: 20110048528
    Abstract: A structure of a solar cell is provided. The structure of the solar cell includes a substrate, a base and a plurality of nanostructures. The base is disposed on the substrate. The nanostructures are disposed on a surface of the base, or a surface of the base includes the nanostructures, so as to increase light absorption of the structure.
    Type: Application
    Filed: May 26, 2010
    Publication date: March 3, 2011
    Applicant: National Taiwan University
    Inventors: Jian-Jang HUANG, Cheng-Pin Chen, Pei-Hsuan Lin
  • Patent number: 7875478
    Abstract: A method for controlling the color contrast of a multi-wavelength light-emitting diode (LED) made according to the present invention is disclosed. The present invention includes at least the step of increasing the junction temperature of a multi-quantum-well LED, such that holes are distributed in a deeper quantum-well layer of the LED to increase luminous intensity of the deeper quantum-well layer, thereby controlling the relative intensity ratios of the multiple wavelengths emitted by the LED. The step of increasing junction temperature of the multi-quantum-well LED is achieved either by controlling resistance through modulating thickness of a p-type electrode layer of the LED or by modifying the mesa area size to control its relative heat radiation surface area.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: January 25, 2011
    Assignee: National Taiwan University
    Inventors: Dong-Ming Yeh, Horng-Shyang Chen, Chih-Feng Lu, Chi-Feng Huang, Tsung-Yi Tang, Jian-Jang Huang, Yen-Cheng Lu, Chih-Chung Yang, Jeng-Jie Huang, Yung-Sheng Chen
  • Publication number: 20100276682
    Abstract: An oxide semiconductor thin-film transistor, comprising: a source electrode and a drain electrode formed on a substrate; a composite semiconductor active layer formed between the source electrode and the drain electrode; a gate dielectric layer formed on the source electrode, the composite semiconductor active layer and the drain electrode; and a gate electrode formed on the gate dielectric layer and corresponding to the composite semiconductor active layer; wherein the composite semiconductor active layer comprises a low carrier-concentration first oxide semiconductor layer and a high carrier-concentration second oxide semiconductor layer.
    Type: Application
    Filed: June 1, 2009
    Publication date: November 4, 2010
    Applicants: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE, NATIONAL TAIWAN UNIVERSITY
    Inventors: Yung-Hui YEH, Chun-Cheng CHENG, Jian-Jang HUANG, Shih-Hua HSIAO, Kuang-Chung LIU
  • Publication number: 20080157056
    Abstract: A producing method of poly-wavelength light-emitting diode of utilizing nano-crystals and the light-emitting device thereof includes growing and processing a multiple-quantum-well layer based on stacking the mixture of at least two kinds of quantum wells to produce a two-wavelength light-emitting diode. Then, attaching nano-crystals on the two-wavelength light-emitting diode to transfer one of the wavelengths of the two-wavelength light-emitting diode to produce a poly-wavelength light-emitting diode. The device of the present invention can emit blue, green and red lights to produce white light.
    Type: Application
    Filed: June 26, 2007
    Publication date: July 3, 2008
    Inventors: Dong-Ming Yeh, Horng-Shyang Chen, Chih-Feng Lu, Chi-Feng Huang, Wen-Yu Shiao, Jian-Jang Huang, Yen-Cheng Lu, Chih-Chung Yang
  • Publication number: 20080124827
    Abstract: A method and structure for manufacturing long-wavelength visible light-emitting diode (LED) using the prestrained growth effect comprises the following steps: Growing a strained low-indium-content InGaN layer on the N-type GaN layer, and then growing a high-indium-content InGaN/GaN single- or multiple-quantum-well light-emitting structure on the low-indium-content InGaN layer to enhance the indium content of the high-indium quantum wells and hence to elongate the emission wavelength of the LED. The method of the invention can elongate emission wavelength of the LED by more than 50 nm (nanometer) such that an originally designated green LED can emit red light or orange light without influencing other electrical properties.
    Type: Application
    Filed: June 28, 2007
    Publication date: May 29, 2008
    Inventors: Chi-Feng Huang, Tsung-Yi Tang, Jeng-Jie Huang, Wen-Yu Shiao, Horng-Shyang Chen, Chih-Feng Lu, Jian-Jang Huang, Chih-Chung Yang
  • Publication number: 20080035909
    Abstract: A method for controlling the color contrast of a multi-wavelength light-emitting diode (LED) made according to the present invention is disclosed. The present invention includes at least the step of increasing the junction temperature of a multi-quantum-well LED, such that holes are distributed in a deeper quantum-well layer of the LED to increase luminous intensity of the deeper quantum-well layer, thereby controlling the relative intensity ratios of the multiple wavelengths emitted by the LED. The step of increasing junction temperature of the multi-quantum-well LED is achieved either by controlling resistance through modulating thickness of a p-type electrode layer of the LED or by modifying the mesa area size to control its relative heat radiation surface area.
    Type: Application
    Filed: June 26, 2007
    Publication date: February 14, 2008
    Inventors: Chih-Feng Lu, Horng-Shyang Chen, Dong-Ming Yeh, Chi-Feng Huang, Tsung-Yi Tang, Jian-Jang Huang, Yen-Cheng Lu, Chih-Chung Yang, Jeng-Jie Huang, Yung-Sheng Chen
  • Publication number: 20060215063
    Abstract: A circuit and a method for eliminating interference introduced from an image channel into a desired channel is described. The circuit includes a splitter and an adder. The splitter generates signals split from a received signal having frequency components within the desired and image channel. The adder adds together the signals output from the splitter. The circuit can be used in an TV tuner.
    Type: Application
    Filed: March 24, 2005
    Publication date: September 28, 2006
    Applicant: HIMAX TECHNOLOGIES, INC.
    Inventors: Jian-Jang Huang, Yuan-Kai Chu