Patents by Inventor Jian-ping (Jim) Zheng

Jian-ping (Jim) Zheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10121605
    Abstract: The present invention provides for two types of wide operating temperature range electrolyte formulations that contain methyl butyrate (MB) and additives have been investigated and compared in Lithium-ion capacitors (LICs), which were consisted of hard carbon (HC)/stabilized lithium metal powder (SLMP) anodes and activated carbon (AC) cathodes. The electrolyte L1 that was 1M LiPF6 in ethylene carbonate (EC)+ethyl methyl carbonate (EMC)+MB (20:20:60 v/v %)+0.1M lithium bis(oxalato)borate (LiBOB) and electrolyte L2 that was 1M LiPF6 in EC+EMC+MB (20:20:60 v/v %)+0.1M lithium difluoro(oxalato)borate (LiDFOB) enabled the LICs to discharge at the temperature as low as ?40° C., which the conventional electrolyte LP30 that was 1 M LiPF6 in EC+dimethyl carbonate (DMC) (50:50 w/w %) could not achieve. At the low temperature of ?40° C., L2 held more than 64% of the discharge capacity at 30° C., while the L1 only had the discharge capacity retention of 30%.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: November 6, 2018
    Assignee: GENERAL CAPACITOR, LLC
    Inventors: Wanjun Cao, Harry Chen, Jian-ping (Jim) Zheng, Daniel L. Adams
  • Publication number: 20160307706
    Abstract: The present invention provides for two types of wide operating temperature range electrolyte formulations that contain methyl butyrate (MB) and additives have been investigated and compared in Lithium-ion capacitors (LICs), which were consisted of hard carbon (HC)/stabilized lithium metal powder (SLMP) anodes and activated carbon (AC) cathodes. The electrolyte L1 that was 1M LiPF6 in ethylene carbonate (EC)+ethyl methyl carbonate (EMC)+MB (20:20:60 v/v %)+0.1M lithium bis(oxalato)borate (LiBOB) and electrolyte L2 that was 1M LiPF6 in EC+EMC+MB (20:20:60 v/v %)+0.1M lithium difluoro(oxalato)borate (LiDFOB) enabled the LICs to discharge at the temperature as low as ?40° C., which the conventional electrolyte LP30 that was 1 M LiPF6 in EC+dimethyl carbonate (DMC) (50:50 w/w %) could not achieve. At the low temperature of ?40° C., L2 held more than 64% of the discharge capacity at 30° C., while the L1 only had the discharge capacity retention of 30%.
    Type: Application
    Filed: December 14, 2015
    Publication date: October 20, 2016
    Applicant: GENERAL CAPACITOR, LLC
    Inventors: Wanjun Cao, Harry Chen, Jian-ping (Jim) Zheng, Daniel L. Adams
  • Publication number: 20130337348
    Abstract: Alkali metal-air flow battery can include an electrochemical reaction unit and an electrolyte reservoir. The electrolyte reservoir can be fluidly coupled to a cathode electrolyte chamber to allow for circulation of an electrolyte solution from the electrolyte reservoir to the cathode electrolyte chamber. Circulation of the electrolyte solution from the electrolyte reservoir to the cathode electrolyte chamber can be done at a rate sufficient to maintain the solubility of at least one discharge product of a reaction occurring in the cathode section in the electrolyte solution.
    Type: Application
    Filed: November 7, 2011
    Publication date: December 19, 2013
    Inventor: Jian-Ping (Jim) Zheng
  • Publication number: 20120301812
    Abstract: A membrane electrode assembly (MEA) for a fuel cell comprising a catalyst layer and a method of making the same. The catalyst layer can include a plurality of catalyst nanoparticles, e.g., platinum, disposed on buckypaper. The method can include the steps of placing buckypaper in a vessel with a catalyst-precursor salt and a fluid. The temperature and pressure conditions within the vessel are modified so as to place the fluid in the supercritical state. The supercritical state of the supercritical fluid containing the precursor salt is maintained for period of time to impregnate the buckypaper with the catalyst-precursor salt. Catalyst nanoparticles are deposited on the buckypaper. The supercritical fluid and the precursor are removed to form a metal catalyst impregnated buckypaper.
    Type: Application
    Filed: March 26, 2012
    Publication date: November 29, 2012
    Applicant: FLORIDA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventors: Jian-ping (Jim) Zheng, Wei Zhu, Changchun Zeng, Zhiyong Liang, Chun Zhang, Ben Wang