Patents by Inventor JIAN PING

JIAN PING has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9944857
    Abstract: Described herein are processes for converting a biomass starting material (such as lignocellulosic materials) into a low oxygen containing, stable liquid intermediate that can be refined to make liquid hydrocarbon fuels. More specifically, the process can be a catalytic biomass pyrolysis process wherein an oxygen removing catalyst is employed in the reactor while the biomass is subjected to pyrolysis conditions. The stream exiting the pyrolysis reactor comprises bio-oil having a low oxygen content, and such stream may be subjected to further steps, such as separation and/or condensation to isolate the bio-oil.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: April 17, 2018
    Assignee: Research Triangle Institute
    Inventors: David C. Dayton, Raghubir P. Gupta, Brian S. Turk, Atish Kataria, Jian-Ping Shen
  • Publication number: 20180100227
    Abstract: A method may include annealing a material including iron and nitrogen in the presence of an applied magnetic field to form at least one Fe16N2 phase domain. The applied magnetic field may have a strength of at least about 0.2 Tesla (T).
    Type: Application
    Filed: December 13, 2017
    Publication date: April 12, 2018
    Inventors: Michael P. Brady, Orlando Rios, Yanfeng Jiang, Gerard M. Ludtka, Craig A. Bridges, Jian-Ping Wang, Xiaowei Zhang, Lawrence F. Allard, Edgar Lara-Curzio
  • Publication number: 20180103244
    Abstract: A stereo vision image calibration method is applied to an image capturing device having a first image capturing unit, a second image capturing unit and an image rectify unit. The first image capturing unit and the second image capturing unit are arranged along a first direction. The first image capturing unit and the second image capturing unit are respectively utilized to acquire a first image and a second image. The image rectify unit rectifies the first image and the second image by a stereo vision parameter. The stereo image calibration method includes selecting the rectified first image and the rectified second image to compute a global disparity vector between the adjust image and the reference image, and if a vector component of the global disparity vector along a second direction which is different from the first direction has non-zero value, processing a stereo vision calibration according to the vector component.
    Type: Application
    Filed: September 10, 2017
    Publication date: April 12, 2018
    Inventors: Jian-Ping Fang, Sheng-Yuan Chen
  • Patent number: 9928067
    Abstract: Systems and methods are provided in example embodiments for performing binary translation. A binary translation system converts, by a translator module, source instructions to target instructions. The binary translation system identifies a condition code block in the source instructions, where the condition code block includes a plurality of condition bits. In response to identifying the condition code block, the binary translation system provides an optimizer module to convert the condition code block. Then, the binary translation system performs a pre-execution on the condition code block to resolve the plurality of condition bits in the condition code block.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: March 27, 2018
    Assignee: Intel Corporation
    Inventors: Xueliang Zhong, Jianhui Li, Jian Ping Jane Chen, Gang Wang, Yi Qian, Huifeng Gu
  • Patent number: 9927431
    Abstract: A biosensor includes a magnetic structure having grooved surface to biologically bond magnetic labels to a biological substance within the grooves. The grooves are positioned within the magnetic structure so that stray magnetic fields from the magnetic structure magnetize magnetic labels within the groove. The magnetic labels may be magnetic nanoparticles or magnetic microbeads. The techniques may reduce or eliminate the usage of any external magnetic field generator, e.g., electromagnets or current lines.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: March 27, 2018
    Assignee: Regents of the University of Minnesota
    Inventors: Jian-Ping Wang, Yuanpeng Li, Wang Yi
  • Publication number: 20180065114
    Abstract: This invention is directed to novel mixed transition metal iron (II/III) catalysts for the extraction of oxygen from CO2 and the selective reaction with organic compounds.
    Type: Application
    Filed: November 9, 2017
    Publication date: March 8, 2018
    Inventors: Jian-ping Shen, Marty Lail, Brian Turk, Paul D. Mobley, Jason S. Norman, Laura DOUGLAS, Jonathan PETERS
  • Publication number: 20180043328
    Abstract: A mixed salt composition adapted for use as a sorbent for carbon dioxide removal from a gaseous stream is provided, the composition being in solid form and including magnesium oxide, an alkali metal carbonate, and an alkali metal nitrate, wherein the composition has a molar excess of magnesium characterized by a Mg:X atomic ratio of at least about 3:1, wherein X is the alkali metal. A process for preparing the mixed salt is also provided, the process including mixing a magnesium salt with a solution comprising alkali metal ions, carbonate ions, and nitrate ions to form a slurry or colloid including a solid mixed salt including magnesium carbonate; separating the solid mixed salt from the slurry or colloid to form a wet cake; drying the wet cake to form a dry cake including the solid mixed salt; and calcining the dry cake to form a mixed salt sorbent.
    Type: Application
    Filed: October 19, 2017
    Publication date: February 15, 2018
    Inventors: Jian-Ping Shen, Luke James Ivor Coleman, Marty Alan Lail, Raghubir Prasad Gupta, Brian Scott Turk
  • Patent number: 9887534
    Abstract: A short-circuit detecting device includes a coil and a processing circuit. The coil is configured to detect a variation of magnetic flux intensity generated by a current variation of a current flowing through a power semiconductor switch and to generate an induced electromotive force based on the variation of magnetic flux intensity. When the current variation rate of said current is greater than a predetermined value, the processing circuit is configured to generate a short-circuit signal based on the induced electromotive force so as to turn off the power semiconductor switch based on the short-circuit signal.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: February 6, 2018
    Assignee: DELTA ELECTRONICS (SHANGHAI) CO., LTD.
    Inventors: Ming Wang, Jian-Ping Ying, Jian-Gang Huang, Li-Feng Qiao, Tao Jiang
  • Patent number: 9884313
    Abstract: This invention is directed to novel mixed transition metal iron (II/III) catalysts for the extraction of oxygen from CO2 and the selective reaction with organic compounds.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: February 6, 2018
    Assignee: Research Triangle Institute
    Inventors: Jian-ping Shen, Marty Lail, Brian Turk, Paul D. Mobley, Jason S. Norman, Laura Douglas, Jonathan Peters
  • Publication number: 20180025841
    Abstract: Techniques are disclosed concerning applied magnetic field synthesis and processing of iron nitride magnetic materials. Some methods concern casting a material including iron in the presence of an applied magnetic field to form a workpiece including at least one ironbased phase domain including uniaxial magnetic anisotropy, wherein the applied magnetic field has a strength of at least about 0.01 Tesla (T). Also disclosed are workpieces made by such methods, apparatus for making such workpieces and bulk materials made by such methods.
    Type: Application
    Filed: July 22, 2015
    Publication date: January 25, 2018
    Applicant: REGENTS OF THE UNIVERSITY OF MINNESOTA
    Inventors: Jian-Ping WANG, YanFeng JIANG
  • Patent number: 9864218
    Abstract: Techniques are described for a device that includes an optical channel configured to transport an optical signal. The device further includes a magnetic material with low optical absorption through which a portion of the optical signal is configured to flow. The magnetic material is configured to receive an electrical signal that sets a magnetization state of the magnetic material. The magnetic material is further configured to modulate, based on the magnetization state, the portion of the optical signal flowing though the magnetic material.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: January 9, 2018
    Assignee: Regents of the University of Minnesota
    Inventors: Jian-Ping Wang, Mo Li
  • Publication number: 20180001385
    Abstract: Techniques are disclosed for milling an iron-containing raw material in the presence of a nitrogen source to generate anisotropically shaped particles that include iron nitride and have an aspect ratio of at least 1.4. Techniques for nitridizing an anisotropic particle including iron, and annealing an anisotropic particle including iron nitride to form at least one a?-Fe16N2 phase domain within the anisotropic particle including iron nitride also are disclosed. In addition, techniques for aligning and joining anisotropic particles to form a bulk material including iron nitride, such as a bulk permanent magnet including at least one a?-Fe16N2 phase domain, are described. Milling apparatuses utilizing elongated bars, an electric field, and a magnetic field also are disclosed.
    Type: Application
    Filed: January 22, 2016
    Publication date: January 4, 2018
    Inventors: Jian-Ping WANG, YanFeng JIANG
  • Patent number: 9851987
    Abstract: Various embodiments include nested emulation for a source application and source emulator. Duplicate source ISA libraries redirect the source emulator library calls to a target library, thereby forcing the native emulator through proper emulation channels between first and second ISAs. Other embodiments concern accelerating dynamic linking by determining certain function calls that, rather than being processed through emulation of PLT code, are instead directly called without the need for PLT code translation. Some embodiments address both nested emulation and accelerated dynamic linking but other embodiments include one of nested emulation and accelerated dynamic linking. Other embodiments are described herein.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: December 26, 2017
    Assignee: Intel Corporation
    Inventors: Xueliang Zhong, Jianhui Li, Jian Ping Chen, Tingtao Li, Yong Wu, Wen Tan, Xiao Dong Lin
  • Publication number: 20170365381
    Abstract: A permanent magnet may include a Fe16N2 phase in a strained state. In some examples, strain may be preserved within the permanent magnet by a technique that includes etching an iron nitride-containing workpiece including Fe16N2 to introduce texture, straining the workpiece, and annealing the workpiece. In some examples, strain may be preserved within the permanent magnet by a technique that includes applying at a first temperature a layer of material to an iron nitride-containing workpiece including Fe16N2, and bringing the layer of material and the iron nitride-containing workpiece to a second temperature, where the material has a different coefficient of thermal expansion than the iron nitride-containing workpiece. A permanent magnet including an Fe16N2 phase with preserved strain also is disclosed.
    Type: Application
    Filed: January 22, 2016
    Publication date: December 21, 2017
    Inventors: Jian-Ping WANG, YanFeng JIANG
  • Publication number: 20170342220
    Abstract: When a polymer gel has excellent mechanical strength and an ability to maintain surface wetness for a longer time, the polymer gel may be very widely applied to a variety of fields. The present disclosure provides example embodiments of a polymer gel having excellent mechanical strength and an ability to maintain surface wetness for a longer time. Further, the present disclosure provides example embodiments of a method of preparing the polymer gel.
    Type: Application
    Filed: December 25, 2015
    Publication date: November 30, 2017
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kazuo IIJIMA, Jian Ping GONG, Yukiko HANE, Takayuki KUROKAWA
  • Publication number: 20170337983
    Abstract: In some examples, an electronic device comprising an input ferroelectric (FE) capacitor, an output FE capacitor, and a channel positioned beneath the input FE capacitor and positioned beneath the output FE capacitor. In some examples, the channel is configured to carry a magnetic signal from the input FE capacitor to the output FE capacitor to cause a voltage change at the output FE capacitor. In some examples, the electronic device further comprises a transistor-based drive circuit electrically connected to an output node of the output FE capacitor. In some examples, the transistor-based drive circuit is configured to deliver, based on the voltage change at the output FE capacitor, an output signal to an input node of a second device.
    Type: Application
    Filed: May 22, 2017
    Publication date: November 23, 2017
    Inventors: Jian-Ping Wang, Mahdi Jamali, Sachin S. Sapatnekar, Meghna G. Mankalale, Zhaoxin Liang, Angeline Klemm Smith, Mahendra DC, Hyung-il Kim, Zhengyang Zhao
  • Patent number: 9823316
    Abstract: A magnetic biosensor can include a magnetic stack comprising a free layer, a fixed layer, and a nonmagnetic layer between the free layer and the fixed layer. At least one of the free layer or the fixed layer may have a magnetic moment oriented out of a major plane of the free layer or the fixed layer, respectively, in an absence of an external magnetic field. The magnetic biosensor also may include a sample container disposed over the magnetic stack, a plurality of capture antibodies attached to a bottom surface of the sample container above the magnetic stack, and a magnetic field generator configured to generate a magnetic field substantially perpendicular to the major plane of the free layer or fixed layer.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: November 21, 2017
    Assignee: REGENTS OF THE UNIVERSITY OF MINNESOTA
    Inventors: Jian-Ping Wang, Md Tofizur Rahman, Yi Wang
  • Publication number: 20170330660
    Abstract: A bulk permanent magnetic material may include between about 5 volume percent and about 40 volume percent Fe16N2 phase domains, a plurality of nonmagnetic atoms or molecules forming domain wall pinning sites, and a balance soft magnetic material, wherein at least some of the soft magnetic material is magnetically coupled to the Fe16N2 phase domains via exchange spring coupling. In some examples, a bulk permanent magnetic material may be formed by implanting N+ ions in an iron workpiece using ion implantation to form an iron nitride workpiece, pre-annealing the iron nitride workpiece to attach the iron nitride workpiece to a substrate, and post-annealing the iron nitride workpiece to form Fe16N2 phase domains within the iron nitride workpiece.
    Type: Application
    Filed: June 14, 2017
    Publication date: November 16, 2017
    Inventors: Jian-Ping Wang, Yanfeng Jiang
  • Patent number: 9808783
    Abstract: A mixed salt composition adapted for use as a sorbent for carbon dioxide removal from a gaseous stream is provided, the composition being in solid form and including magnesium oxide, an alkali metal carbonate, and an alkali metal nitrate, wherein the composition has a molar excess of magnesium characterized by a Mg:X atomic ratio of at least about 3:1, wherein X is the alkali metal. A process for preparing the mixed salt is also provided, the process including mixing a magnesium salt with a solution comprising alkali metal ions, carbonate ions, and nitrate ions to form a slurry or colloid including a solid mixed salt including magnesium carbonate; separating the solid mixed salt from the slurry or colloid to form a wet cake; drying the wet cake to form a dry cake including the solid mixed salt; and calcining the dry cake to form a mixed salt sorbent.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: November 7, 2017
    Assignee: Research Triangle Institute
    Inventors: Jian-Ping Shen, Luke James Ivor Coleman, Marty Alan Lail, Raghubir Prasad Gupta, Brian Scott Turk
  • Patent number: 9797932
    Abstract: A voltage sampling system is provided. The voltage sampling system includes a voltage sampling device, two optic-fiber transmission lines and a control device. The voltage sampling device includes a voltage-dividing resistor module, a common mode rejection circuit and an analog-to-digital converter. The voltage-dividing resistor module generates a first and a second divided voltages according to a voltage source. The common mode rejection circuit receives the first and the second divided voltages to perform a common-mode noise rejecting process to generate an output voltage. The analog-to-digital converter converts the output voltage to generate a digital data signal. The two optic-fiber transmission lines transmit the digital data signal and a clock signal respectively. The control device receives the digital data signal from the analog-to-digital converter and the clock signal to perform a digital data processing.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: October 24, 2017
    Assignee: DELTA ELECTRONICS (SHANGHAI) CO., LTD.
    Inventors: Bo-Yu Pu, Yi Zhang, Ming Wang, Hong-Jian Gan, Jian-Ping Ying