Patents by Inventor Jian Q. Yao

Jian Q. Yao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10646326
    Abstract: The present disclosure relates, in some aspects, to orthopaedic implants for securing soft tissue to bone and methods for using the same. One particular implant comprises a first exposed porous surface region, having pores for promoting bone ingrowth, and a second exposed porous surface, having pores for promoting soft tissue ingrowth. At least some of the pores of the first exposed porous surface region may be seeded with osteocytic factors and at least some of the pores of the second exposed porous surface region may be seeded with fibrocytic factors. Such orthopaedic implants can advantageously facilitate regeneration of the soft tissue to bone interface.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: May 12, 2020
    Assignee: Zimmer, Inc.
    Inventors: Tao Jiang, Jian Q. Yao, Hali Wang, Timothy A. Hoeman, Ray Zubok, John Chernosky, Keith A. Roby
  • Patent number: 10167447
    Abstract: The present disclosure provides tissue supports and methods for preparing a cartilage composition for repairing cartilage defects, which is prepared by expanding and integrating small cartilage tissue pieces derived from donor or engineered tissue. The methods and supports described herein promote cell migration and integration of neighboring tissue pieces in culture to form the cartilage composition. Methods of cartilage repair using the cartilage composition are also described.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: January 1, 2019
    Assignee: Zimmer, Inc.
    Inventors: Jian Q. Yao, Hali Wang
  • Publication number: 20180008399
    Abstract: The present disclosure relates, in some aspects, to orthopaedic implants for securing soft tissue to bone and methods for using the same. One particular implant comprises a first exposed porous surface region, having pores for promoting bone ingrowth, and a second exposed porous surface, having pores for promoting soft tissue ingrowth. At least some of the pores of the first exposed porous surface region may be seeded with osteocytic factors and at least some of the pores of the second exposed porous surface region may be seeded with fibrocytic factors. Such orthopaedic implants can advantageously facilitate regeneration of the soft tissue to bone interface.
    Type: Application
    Filed: September 20, 2017
    Publication date: January 11, 2018
    Inventors: Tao Jiang, Jian Q. Yao, Hali Wang, Timothy A. Hoeman, Ray Zubok, John Chernosky, Keith A. Roby
  • Patent number: 9827087
    Abstract: The present disclosure relates, in some aspects, to orthopedic implants for securing soft tissue to bone and methods for using the same. One particular implant comprises a first exposed porous surface region, having pores for promoting bone ingrowth, and a second exposed porous surface, having pores for promoting soft tissue ingrowth. At least some of the pores of the first exposed porous surface region may be seeded with osteocytic factors and at least some of the pores of the second exposed porous surface region may be seeded with fibrocytic factors. Such orthopedic implants can advantageously facilitate regeneration of the soft tissue to bone interface.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: November 28, 2017
    Assignee: Zimmer, Inc.
    Inventors: Tao Jiang, Jian Q. Yao, Hali Wang, Timothy A. Hoeman, Ray Zubok, John Chernosky, Keith A. Roby
  • Patent number: 9339587
    Abstract: Compositions and methods for repairing a ruptured connective tissue are disclosed. The composition may include a first biocompatible material to provide a scaffold for connective tissue cell growth and tissue repair. This first biocompatible material may withstand a tensile load of up to 250 N. The composition may also include a second biocompatible material including at least one bioactive agent that can stimulate connective tissue cell growth and tissue repair. The method may include positioning a first end of the first biocompatible material adjacent a first end of a ruptured connective tissue, positioning a second end of the first biocompatible material adjacent a second end of the ruptured connective tissue, and anchoring the first biocompatible material to the first and second tendon ends. The method may alternatively comprise or further include positioning a second biocompatible material between the first and second ends of the ruptured connective tissue.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: May 17, 2016
    Assignee: Zimmer Orthobiologics, Inc.
    Inventors: Hali Wang, Jian Q. Yao
  • Patent number: 9138318
    Abstract: Implants for repairing tissue defects, such as cartilage tissue defects, and methods of their preparation and use are disclosed. A mold of a tissue defect is prepared by pressing upon the defect a substrate having shape memory, such as aluminum foil. The mold, which has contours substantially conforming to those of the defect, is removed from the defect, and tissue particles are added to the mold ex vivo. A biological carrier such as biocompatible glue is also added to the mold. The combination of tissue particles and the biological carrier thereby form an implant, which retains its shape after separation from the mold. The implant can be transferred to the tissue defect, with contours of the mold matching corresponding contours of the defect.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: September 22, 2015
    Assignee: Zimmer, Inc.
    Inventors: Jian Q. Yao, Ben Walthall, Jizong Gao, Victor Zaporojan
  • Publication number: 20150257871
    Abstract: The present disclosure relates, in some aspects, to orthopaedic implants for securing soft tissue to bone and methods for using the same. One particular implant comprises a first exposed porous surface region, having pores for promoting bone ingrowth, and a second exposed porous surface, having pores for promoting soft tissue ingrowth. At least some of the pores of the first exposed porous surface region may be seeded with osteocytic factors and at least some of the pores of the second exposed porous surface region may be seeded with fibrocytic factors. Such orthopaedic implants can advantageously facilitate regeneration of the soft tissue to bone interface.
    Type: Application
    Filed: June 1, 2015
    Publication date: September 17, 2015
    Inventors: Tao Jiang, Jian Q. Yao, Hali Wang, Timothy A. Hoeman, Ray Zubok, John Chernosky, Keith A. Roby
  • Patent number: 9055977
    Abstract: The present disclosure relates, in some aspects, to orthopaedic implants for securing soft tissue to bone and methods for using the same. One particular implant comprises a first exposed porous surface region, having pores for promoting bone ingrowth, and a second exposed porous surface, having pores for promoting soft tissue ingrowth. At least some of the pores of the first exposed porous surface region may be seeded with osteocytic factors and at least some of the pores of the second exposed porous surface region may be seeded with fibrocytic factors. Such orthopaedic implants can advantageously facilitate regeneration of the soft tissue to bone interface.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: June 16, 2015
    Assignee: Zimmer, Inc.
    Inventors: Tao Jiang, Jian Q. Yao, Hali Wang, Timothy A. Hoeman, Ray Zubok, John Chernosky, Keith A. Roby
  • Publication number: 20140335612
    Abstract: The present disclosure provides tissue supports and methods for preparing a cartilage composition for repairing cartilage defects, which is prepared by expanding and integrating small cartilage tissue pieces derived from donor or engineered tissue. The methods and supports described herein promote cell migration and integration of neighboring tissue pieces in culture to form the cartilage composition. Methods of cartilage repair using the cartilage composition are also described.
    Type: Application
    Filed: June 9, 2014
    Publication date: November 13, 2014
    Inventors: Jian Q. Yao, Hali Wang
  • Publication number: 20140178343
    Abstract: The present disclosure provides tissue supports and methods for preparing a cartilage composition for repairing cartilage defects, which is prepared by expanding and integrating small cartilage tissue pieces derived from donor or engineered tissue. The methods and supports described herein promote cell migration and integration of neighboring tissue pieces in culture to form the cartilage composition. Methods of cartilage repair using the cartilage composition are also described.
    Type: Application
    Filed: March 13, 2013
    Publication date: June 26, 2014
    Inventors: Jian Q. Yao, Hali Wang
  • Patent number: 8608759
    Abstract: Medical devices for cutting and suturing biological tissue generally include a shaft and first and second guide members each including a first portion coupled to the shaft at a first location and a second portion coupled to the shaft at a second location. The first portions are movable along the shaft relative to the second portions, and the first and second guide members define an arcuate profile and are configured to flex in response to such movement. When used to cut tissue, the medical device may further include a blade positioned between the first and second guide members. When used to suture tissue, one or more suture guides may be provided on the first guide member for directing a suture needle through tissue proximate the first guide member. Methods of repairing and replacing a meniscus using the medical devices are also provided.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: December 17, 2013
    Assignee: Zimmer Orthobiologics, Inc.
    Inventors: Victor Zaporojan, Jian Q. Yao, Rodney E. Bristol, Hui Liu, Hali Wang, Hai-Qing Xian
  • Publication number: 20130330415
    Abstract: The invention provides a composition including isolated small living tissue particles, a method of making the tissue particles, and a method of using the composition to ameliorate a tissue defect. The tissue particles are composed of cells and their associated extracellular molecules and are sized, in certain embodiments, to be smaller than about 1 mm. Another aspect of the inventive tissue particles is the large percentage of viable cells. In certain embodiments, the tissue particles are made from cartilage and the composition may also contain additives such as adhesives, solutions, and bioactive agents.
    Type: Application
    Filed: July 26, 2013
    Publication date: December 12, 2013
    Applicant: Zimmer Orthobiologics, Inc.
    Inventors: Jian Q. Yao, Victor Zaporojan
  • Patent number: 8497121
    Abstract: The invention provides a composition including isolated small living tissue particles, a method of making the tissue particles, and a method of using the composition to ameliorate a tissue defect. The tissue particles are composed of cells and their associated extracellular molecules and are sized, in certain embodiments, to be smaller than about 1 mm. Another aspect of the inventive tissue particles is the large percentage of viable cells. In certain embodiments, the tissue particles are made from cartilage and the composition may also contain additives such as adhesives, solutions, and bioactive agents.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: July 30, 2013
    Assignee: Zimmer Orthobiologics, Inc.
    Inventors: Jian Q. Yao, Victor Zaporojan
  • Publication number: 20130131699
    Abstract: The present disclosure relates, in some aspects, to orthopaedic implants for securing soft tissue to bone and methods for using the same. One particular implant comprises a first exposed porous surface region, having pores for promoting bone ingrowth, and a second exposed porous surface, having pores for promoting soft tissue ingrowth. At least some of the pores of the first exposed porous surface region may be seeded with osteocytic factors and at least some of the pores of the second exposed porous surface region may be seeded with fibrocytic factors. Such orthopaedic implants can advantageously facilitate regeneration of the soft tissue to bone interface.
    Type: Application
    Filed: November 16, 2012
    Publication date: May 23, 2013
    Applicant: Zimmer, Inc.
    Inventors: Tao Jiang, Jian Q. Yao, Hali Wang, Timothy A. Hoeman, Ray Zubok, John Chernosky, Keith A. Roby
  • Publication number: 20120183586
    Abstract: The invention provides a composition including isolated small living tissue particles, a method of making the tissue particles, and a method of using the composition to ameliorate a tissue defect. The tissue particles are composed of cells and their associated extracellular molecules and are sized, in certain embodiments, to be smaller than about 1 mm. Another aspect of the inventive tissue particles is the large percentage of viable cells. In certain embodiments, the tissue particles are made from cartilage and the composition may also contain additives such as adhesives, solutions, and bioactive agents.
    Type: Application
    Filed: March 23, 2012
    Publication date: July 19, 2012
    Applicant: Zimmer Orthobiologics, Inc.
    Inventors: Jian Q. Yao, Victor Zaporojan
  • Publication number: 20120179173
    Abstract: Medical devices for cutting and suturing biological tissue generally include a shaft and first and second guide members each including a first portion coupled to the shaft at a first location and a second portion coupled to the shaft at a second location. The first portions are movable along the shaft relative to the second portions, and the first and second guide members define an arcuate profile and are configured to flex in response to such movement. When used to cut tissue, the medical device may further include a blade positioned between the first and second guide members. When used to suture tissue, one or more suture guides may be provided on the first guide member for directing a suture needle through tissue proximate the first guide member. Methods of repairing and replacing a meniscus using the medical devices are also provided.
    Type: Application
    Filed: March 21, 2012
    Publication date: July 12, 2012
    Applicant: Zimmer Orthobiologics, Inc.
    Inventors: Victor Zaporojan, Jian Q. Yao, Rodney Bristol, Hui Liu, Hali Wang, Hai-Qing Xian
  • Publication number: 20120107384
    Abstract: Implants for repairing tissue defects, such as cartilage tissue defects, and methods of their preparation and use are disclosed. A mold of a tissue defect is prepared by pressing upon the defect a substrate having shape memory, such as aluminum foil. The mold, which has contours substantially conforming to those of the defect, is removed from the defect, and tissue particles are added to the mold ex vivo. A biological carrier such as biocompatible glue is also added to the mold. The combination of tissue particles and the biological carrier thereby form an implant, which retains its shape after separation from the mold. The implant can be transferred to the tissue defect, with contours of the mold matching corresponding contours of the defect.
    Type: Application
    Filed: December 15, 2011
    Publication date: May 3, 2012
    Applicants: ZIMMER, INC., ISTO TECHNOLOGIES, INC.
    Inventors: Jian Q. Yao, Ben Walthall, Jizong Gao, Victor Zaporojan
  • Patent number: 8163549
    Abstract: The invention provides a composition including isolated small living tissue particles, a method of making the tissue particles, and a method of using the composition to ameliorate a tissue defect. The tissue particles are composed of cells and their associated extracellular molecules and are sized, in certain embodiments, to be smaller than about 1 mm. Another aspect of the inventive tissue particles is the large percentage of viable cells. In certain embodiments, the tissue particles are made from cartilage and the composition may also contain additives such as adhesives, solutions, and bioactive agents.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: April 24, 2012
    Assignee: Zimmer Orthobiologics, Inc.
    Inventors: Jian Q Yao, Victor Zaporojan
  • Patent number: 8162961
    Abstract: Medical devices for cutting and suturing biological tissue generally include a shaft and first and second guide members each including a first portion coupled to the shaft at a first location and a second portion coupled to the shaft at a second location. The first portions are movable along the shaft relative to the second portions, and the first and second guide members define an arcuate profile and are configured to flex in response to such movement. When used to cut tissue, the medical device may further include a blade positioned between the first and second guide members. When used to suture tissue, one or more suture guides may be provided on the first guide member for directing a suture needle through tissue proximate the first guide member. Methods of repairing and replacing a meniscus using the medical devices are also provided.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: April 24, 2012
    Assignee: Zimmer Orthobiologies, Inc.
    Inventors: Victor Zaporojan, Jian Q. Yao, Rodney Bristol, Hui Liu, Hali Wang, Hai-Qing Xian
  • Publication number: 20120020932
    Abstract: A hydrogel-forming composition is provided that comprises an extracellular matrix protein, hyaluronic acid, and a thermosensitive biocompatible polymer such as methylcellulose. The hydrogels can provide a therapeutic effect; further, the hydrogels may comprise an optional therapeutic agent such as cells or a pharmaceutical composition. The composition may be injected to an area in need of treatment by the therapeutic agent. The composition may form a gel at about 37° C., such that the gel maintains the therapeutic agent in the area of the body in need of such treatment.
    Type: Application
    Filed: June 30, 2011
    Publication date: January 26, 2012
    Applicant: Zimmer Orthobiologics, Inc.
    Inventors: Jian Q. Yao, Jizong Gao, Xiao Huang, Archit Sanghvi