Patents by Inventor Jian-Qun Wu

Jian-Qun Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150168176
    Abstract: An improved total field calibration system and method is disclosed for reducing the rotational misalignment between magnetic and gravity sensors in a directional sensing system. The effect of variation of surface components of the Earth's magnetic field during the calibration process on magnetometer misalignment may be completely eliminated by requiring the magnetic dip derived from the sensing system to match that of the Earth's field obtained from a reference source. The calibration process can be performed without monitoring the declination change during the calibration process. Directional sensing systems can be calibrated accurately during a period when the Earth's magnetic field changes rapidly.
    Type: Application
    Filed: December 16, 2014
    Publication date: June 18, 2015
    Inventors: Jian-Qun Wu, James-Christian F. Ang, Lee Jacobo Jose Roitberg
  • Publication number: 20140268892
    Abstract: A converter with adjustable output voltage is coupled to a first power source and a second power source. The converter comprises a transformer, a first conversion circuit, a second conversion circuit, a resonant circuit and a regulating circuit. The first conversion circuit has a plurality of first switch elements, each of the first switch elements is coupled to the transformer. The second conversion circuit has a plurality of second switch elements, and each of the second switch elements is coupled to the transformer. The resonant circuit comprises a first inductor, at least one first capacitor and a second inductor. The first inductor is coupled in series to the transformer, and the first capacitor is coupled in parallel to the second conversion circuit. The second inductor is coupled to the first capacitor. The regulating circuit is coupled between the second power source and the second conversion circuit.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: VOLTRONIC POWER TECHNOLOGY CORP.
    Inventors: BANG-HUA ZHOU, JIAN-QUN WU, JUOR-MING HSIEH
  • Patent number: 8604796
    Abstract: A steerable or non-steerable, magnetic dipole antenna for Measurement-While-Drilling (MWD) or Logging-While-Drilling (LWD) applications. The antenna elements use a hole arrangement in addition to grooves in a steel tool body, which is typically a drill collar. This antenna embodiment is extremely robust, meaning that does not significantly reduce the structural integrity of the tool body in which it is disposed. The antenna embodiment is also relatively wear resistant. The resultant magnetic dipole generated by this antenna is also electrically steerable in inclination angle from a common origin. A variable dipole moment inclination angle combined with independently measured tool rotation orientation during normal drilling allows the antenna to generate a magnetic dipole moment that may be directed at any three dimensional angle and from a common origin point at the centroid of the antenna. The antenna can also be embodied to be more sensitive to resistivity in a particular azimuthal direction.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: December 10, 2013
    Assignee: Precision Energy Services, Inc.
    Inventors: Macmillan M. Wisler, Larry W. Thompson, Jian-Qun Wu, Lance Pate
  • Patent number: 8471563
    Abstract: A steerable, magnetic dipole antenna for Measurement-While-Drilling (MWD) or Logging-While-Drilling (LWD) applications. The antenna elements use a hole arrangement in addition to grooves in a steel tool body, which is typically a drill collar. This antenna embodiment is extremely robust, meaning that does not significantly reduce the structural integrity of the tool body in which it is disposed. The antenna embodiment is also relatively wear resistant. The resultant magnetic dipole generated by this antenna is also electrically steerable in inclination angle from a common origin. A variable dipole moment inclination angle combined with independently measured tool rotation orientation during normal drilling allows the antenna to generate a magnetic dipole moment that may be directed at any three dimensional angle and from a common origin point at the centroid of the antenna. The antenna can also be embodied to be more sensitive to resitivity in a particular azimuthal direction.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: June 25, 2013
    Assignee: Precision Energy Services, Inc.
    Inventors: Macmillan M. Wisler, Larry W. Thompson, Jian-Qun Wu, Lance Pate
  • Patent number: 8378908
    Abstract: An electromagnetic antenna for Measurement-While-Drilling (MWD) applications is disclosed. The antenna can include several array elements that can act alone or together in various measurement modes. The antenna elements can be disposed in tool body recesses to be protected from damage. The antenna elements can include a ferrite plate crossed or looped by independent current carrying conductors in two or more directions forming a bi-directional or crossed magnetic dipole. Although disclosed as a MWD system conveyed by a drill string, basic concepts of the system are applicable to other types of borehole conveyance.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: February 19, 2013
    Assignee: Precision Energy Services, Inc.
    Inventors: Macmillan M. Wisler, Larry W. Thompson, Jian-Qun Wu, Michael S. Spencer
  • Patent number: 8217597
    Abstract: A drive circuit comprising: a direct current power source; a control unit for supplying control signals; a power switch topology comprising a first switch and a second switch each having an input terminal, an output terminal, and a control terminal, the input terminals being respectively connected to the power source, the control terminals being connected to the control unit for receiving the control signals there from, the output terminals being connected to a node; and an inductance connected with a capacitive load in series between the node and the power source, wherein the control signals control the switches to alternately conduct to thereby cause the node to output a pulse signal.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: July 10, 2012
    Assignee: Johnson Electric S.A.
    Inventors: Chi Ping Sun, Jian Qun Wu, Hai Bo Jiang, Jian Han
  • Publication number: 20110187373
    Abstract: A steerable or non-steerable, magnetic dipole antenna for Measurement-While-Drilling (MWD) or Logging-While-Drilling (LWD) applications. The antenna elements use a hole arrangement in addition to grooves in a steel tool body, which is typically a drill collar. This antenna embodiment is extremely robust, meaning that does not significantly reduce the structural integrity of the tool body in which it is disposed. The antenna embodiment is also relatively wear resistant. The resultant magnetic dipole generated by this antenna is also electrically steerable in inclination angle from a common origin. A variable dipole moment inclination angle combined with independently measured tool rotation orientation during normal drilling allows the antenna to generate a magnetic dipole moment that may be directed at any three dimensional angle and from a common origin point at the centroid of the antenna. The antenna can also be embodied to be more sensitive to resitivity in a particular azimuthal direction.
    Type: Application
    Filed: April 12, 2011
    Publication date: August 4, 2011
    Applicant: PRECISION ENERGY SERVICES, INC.
    Inventors: Macmillan M. Wisler, Larry W. Thompson, Jian-Qun Wu, Lance Pate
  • Publication number: 20110084698
    Abstract: A steerable, magnetic dipole antenna for Measurement-While-Drilling (MWD) or Logging-While-Drilling (LWD) applications. The antenna elements use a hole arrangement in addition to grooves in a steel tool body, which is typically a drill collar. This antenna embodiment is extremely robust, meaning that does not significantly reduce the structural integrity of the tool body in which it is disposed. The antenna embodiment is also relatively wear resistant. The resultant magnetic dipole generated by this antenna is also electrically steerable in inclination angle from a common origin. A variable dipole moment inclination angle combined with independently measured tool rotation orientation during normal drilling allows the antenna to generate a magnetic dipole moment that may be directed at any three dimensional angle and from a common origin point at the centroid of the antenna. The antenna can also be embodied to be more sensitive to resitivity in a particular azimuthal direction.
    Type: Application
    Filed: January 6, 2010
    Publication date: April 14, 2011
    Applicant: Precision Energy Services, Inc.
    Inventors: Macmillan M. Wisler, Larry W. Thompson, Jian-Qun Wu, Lance Pate
  • Publication number: 20110084697
    Abstract: A steerable, magnetic dipole antenna for Measurement-While-Drilling (MWD) or Logging-While-Drilling (LWD) applications. The antenna elements use a hole arrangement in addition to grooves in a steel tool body, which is typically a drill collar. This antenna embodiment is extremely robust, meaning that does not significantly reduce the structural integrity of the tool body in which it is disposed. The antenna embodiment is also relatively wear resistant. The resultant magnetic dipole generated by this antenna is also electrically steerable in inclination angle from a common origin. A variable dipole moment inclination angle combined with independently measured tool rotation orientation during normal drilling allows the antenna to generate a magnetic dipole moment that may be directed at any three dimensional angle and from a common origin point at the centroid of the antenna.
    Type: Application
    Filed: October 8, 2009
    Publication date: April 14, 2011
    Applicant: PRECISION ENERGY SERVICES, INC.
    Inventors: Macmillan M. Wisler, Larry W. Thompson, Jian-Qun Wu, Lance Pate
  • Publication number: 20110084699
    Abstract: A steerable or non-steerable, magnetic dipole antenna for Measurement-While-Drilling (MWD) or Logging-While-Drilling (LWD) applications. The antenna elements use a hole arrangement in addition to grooves in a steel tool body, which is typically a drill collar. This antenna embodiment is extremely robust, meaning that does not significantly reduce the structural integrity of the tool body in which it is disposed. The antenna embodiment is also relatively wear resistant. The resultant magnetic dipole generated by this antenna is also electrically steerable in inclination angle from a common origin. A variable dipole moment inclination angle combined with independently measured tool rotation orientation during normal drilling allows the antenna to generate a magnetic dipole moment that may be directed at any three dimensional angle and from a common origin point at the centroid of the antenna. The antenna can also be embodied to be more sensitive to resistivity in a particular azimuthal direction.
    Type: Application
    Filed: September 1, 2010
    Publication date: April 14, 2011
    Applicant: PRECISION ENERGY SERVICES, INC.
    Inventors: Macmillan M. Wisler, Larry W. Thompson, Jian-Qun Wu, Lance Pate
  • Publication number: 20100052579
    Abstract: A drive circuit comprising: a direct current power source; a control unit for supplying control signals; a power switch topology comprising a first switch and a second switch each having an input terminal, an output terminal, and a control terminal, the input terminals being respectively connected to the power source, the control terminals being connected to the control unit for receiving the control signals there from, the output terminals being connected to a node; and an inductance connected with a capacitive load in series between the node and the power source, wherein the control signals control the switches to alternately conduct to thereby cause the node to output a pulse signal.
    Type: Application
    Filed: August 27, 2009
    Publication date: March 4, 2010
    Inventors: Chi Ping SUN, Jian Qun WU, Hai Bo JIANG, Jian HAN
  • Publication number: 20080224707
    Abstract: An electromagnetic antenna for Measurement-While-Drilling (MWD) applications is disclosed. The antenna can include several array elements that can act alone or together in various measurement modes. The antenna elements can be disposed in tool body recesses to be protected from damage. The antenna elements can include a ferrite plate crossed or looped by independent current carrying conductors in two or more directions forming a bi-directional or crossed magnetic dipole. Although disclosed as a MWD system conveyed by a drill string, basic concepts of the system are applicable to other types of borehole conveyance.
    Type: Application
    Filed: March 12, 2007
    Publication date: September 18, 2008
    Applicant: PRECISION ENERGY SERVICES, INC.
    Inventors: Macmillan M. Wisler, Larry Wayne Thompson, Jian-Qun Wu, Michael S. Spencer
  • Publication number: 20080204270
    Abstract: Method and apparatus for optimizing mud pulse telemetry data rate by processing a sequence of measured pulses to minimize adverse effects of pressure pulse reflections, attenuations and distortions. A downhole telemetry unit cooperating with a sensor and disposed in a MWD or LWD logging tool generates a sequence of pulse within the mud column. The sequence is encoder to represent the response of the sensor disposed within the logging tool. The encoded pulse sequence is sensed at the surface of the earth using a pressure transducer. The output of the transducer yields an electrical signal that is typically attenuated and can contain reflections and distortions. This measured signal output is processed to minimize the effects of pulse reflections, attenuations and distortions thereby yielding a primary pulse sequence that is more representative of the response of the sensor and allowing an increase in mud pulse telemetry data rate.
    Type: Application
    Filed: February 23, 2007
    Publication date: August 28, 2008
    Applicant: PRECISION ENERGY SERVICES, LTD.
    Inventors: Robert Anthony Aiello, Jian-Qun Wu
  • Patent number: 7353613
    Abstract: A directional sensor system that incorporates a single axis sensor element that is manipulated to a plurality of orientations. The resulting responses of the sensor element at these locations are combined to obtain a measure of orientation of the system. The system applicable for determining orientation of instrumentation within a well borehole such as measurement-while-drilling, wireline and tubing conveyed borehole instrumentation. The system can be used in other subsurface and surface applications.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: April 8, 2008
    Assignee: Weatherford Canada Patnership
    Inventors: Roger P. Bartel, Jian-Qun Wu
  • Publication number: 20070011895
    Abstract: A directional sensor system that incorporates a single axis sensor element that is manipulated to a plurality of orientations. The resulting responses of the sensor element at these locations are combined to obtain a measure of orientation of the system. The system applicable for determining orientation of instrumentation within a well borehole such as measurement-while-drilling, wireline and tubing conveyed borehole instrumentation. The system can be used in other subsurface and surface applications.
    Type: Application
    Filed: June 29, 2006
    Publication date: January 18, 2007
    Applicant: PRECISION ENERGY SERVICES, LTD.
    Inventors: Roger Bartel, Jian-Qun Wu
  • Patent number: 6966211
    Abstract: A method and apparatus is disclosed for improving the accuracy of directional surveys using magnetometers and accelerometers. The method corrects errors in bias, scale-factor, misalignment of cross-axial magnetometers, and bias or scale-factor of axial magnetometer by requiring the magnitude of measured cross-axial magnetic field to be as constant as possible over several tool face angles at a survey point in a wellbore and the magnitude of the measured total magnetic field and dip angle equal to the reference values, respectively. The axial component of the measured magnetic field is also determined. The method also corrects accelerometers similarly. The calibration parameters obtained at one survey point are applied to measurements at other survey points to improve the accuracy of surveys and the efficiency of drilling operations.
    Type: Grant
    Filed: February 4, 2003
    Date of Patent: November 22, 2005
    Assignee: Precision Drilling Technology Services Group Inc.
    Inventor: Jian-Qun Wu
  • Publication number: 20040149004
    Abstract: A method and apparatus is disclosed for improving the accuracy of directional surveys using magnetometers and accelerometers. The method corrects errors in bias, scale-factor, misalignment of cross-axial magnetometers, and bias or scale-factor of axial magnetometer by requiring the magnitude of measured cross-axial magnetic field to be as constant as possible over several tool face angles at a survey point in a wellbore and the magnitude of the measured total magnetic field and dip angle equal to the reference values, respectively. The axial component of the measured magnetic field is also determined. The method also corrects accelerometers similarly. The calibration parameters obtained at one survey point are applied to measurements at other survey points to improve the accuracy of surveys and the efficiency of drilling operations.
    Type: Application
    Filed: February 4, 2003
    Publication date: August 5, 2004
    Inventor: Jian-Qun Wu
  • Patent number: 6646441
    Abstract: An electromagnetic wave propagation resistivity borehole logging system comprising multiple groups of electromagnetic transmitter-receiver arrays operating at three frequencies. The borehole logging tool component of the system employs eight transmitters and four receivers. The transmitters and receivers are disposed axially and symmetrically along the major axis of the tool to form four group pairs. Each group pair consists of a transmitter-receiver groups axially and symmetrically on opposing sides of a reference point on the tool. Each, transmitter-receiver group consists of one transmitter assembly and two receiver assemblies. Each transmitter-receiver group is operated at two of three operating frequencies which are 100 kHz, 400 kHz and 2 MHz. The transmitter and receiver assemblies are fabricated to yield azimuthally symmetrical resistivity measurements in a plane essentially perpendicular to the axis of the tool.
    Type: Grant
    Filed: January 19, 2002
    Date of Patent: November 11, 2003
    Assignee: Precision Drilling Technology Services Group Inc.
    Inventors: Larry W. Thompson, MacMillian M. Wisler, Jian-Qun Wu
  • Patent number: 6601671
    Abstract: The present invention provides a new and unique method, sensor, and apparatus for performing a seismic survey of an earth formation in relation to a borehole. The method includes arranging at least one strain seismic sensor in conjunction with a borehole structure, and mechanically coupling the borehole structure to the borehole to allow seismic data to be accurately transferred to the sensor. The sensor is preferably a fiber optic sensor, including a Fiber Bragg Grating which may be coupled to a relevant borehole structure in a number of ways.
    Type: Grant
    Filed: July 10, 2000
    Date of Patent: August 5, 2003
    Assignee: Weatherford/Lamb, Inc.
    Inventors: Xiaomin Zhao, Francis X. Bostick, Jian-Qun Wu, Daniel L. Gysling, Peter C. Ogle, Allen R. Davis, Alan D. Kersey, Bob A. Hardage
  • Publication number: 20030137301
    Abstract: An electromagnetic wave propagation resistivity borehole logging system comprising multiple groups of electromagnetic transmitter-receiver arrays operating at three frequencies. The borehole logging tool component of the system employs eight transmitters and four receivers. The transmitters and receivers are disposed axially and symmetrically along the major axis of the tool to form four group pairs. Each group pair consists of a transmitter-receiver groups axially and symmetrically on opposing sides of a reference point on the tool. Each, transmitter-receiver group consists of one transmitter assembly and two receiver assemblies. Each transmitter-receiver group is operated at two of three operating frequencies which are 100 kHz, 400 kHz and 2 MHz. The transmitter and receiver assemblies are fabricated to yield azimuthally symmetrical resistivity measurements in a plane essentially perpendicular to the axis of the tool.
    Type: Application
    Filed: January 19, 2002
    Publication date: July 24, 2003
    Inventors: Larry W. Thompson, MacMillian M. Wisler, Jian-Qun Wu