Patents by Inventor Jian-Shian Lin

Jian-Shian Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240087933
    Abstract: A wafer transporting method includes following operations. A plurality of wafers are received in a semiconductor container attached to a mobile vehicle. An air processing system is coupled to a wall of the semiconductor container. The air processing system includes an inlet valve, an outlet valve, a pump between the inlet valve and the outlet valve, and a desiccant coupled to the pump. The semiconductor container is moved. The pump of the air processing system is turned on to extract air from inside the semiconductor container into the air processing system through the inlet valve. Humidity of the air is reduced when the air passes through the desiccant of the air processing system. The air is returned back to the semiconductor container through the outlet valve.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 14, 2024
    Inventors: YOU-CHENG YEH, MAO-CHIH HUANG, YEN-CHING HUANG, YU HSUAN CHUANG, TAI-HSIANG LIN, JIAN-SHIAN LIN
  • Patent number: 11854848
    Abstract: A container includes a container body and an air processing system. The container body includes a plurality of walls defining an interior space for receiving wafers. The air processing system is attached to the container body. The air processing system includes an exchange module, an air extraction module, a first contaminant removal module, a processing module, a second contaminant removal module, a controller module and a power module. The exchange module is coupled to one of the walls of the container body. The air extraction module extracts air from the container body. The first contaminant removal module is coupled to the air extraction module and the exchange module. The processing module is coupled to the air extraction module. The second contaminant removal module is coupled to the processing module and the exchange module. The controller module is configured to turn the air extraction module on and off.
    Type: Grant
    Filed: February 24, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: You-Cheng Yeh, Mao-Chih Huang, Yen-Ching Huang, Yu Hsuan Chuang, Tai-Hsiang Lin, Jian-Shian Lin
  • Patent number: 11633834
    Abstract: A method for repairing a polishing pad in real time includes a trimming step, a detection step, and a reconstruction and analysis step. A surface morphology of the polishing pad is reconstructed through detection, and analysis is performed according to the reconstruction, to ensure that a surface of the polishing pad can recover its function after the surface of the polishing pad is trimmed, so that the polishing pad can be used effectively to reduce costs.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: April 25, 2023
    Assignee: TA LIANG TECHNOLOGY CO., LTD.
    Inventors: Chao-Chang Chen, Jian-Shian Lin, Chun-Chen Chen, Jen-Chien Li, Hsien-Ming Lee, Ching-Tang Hsueh
  • Patent number: 11359906
    Abstract: A system and a method for uniformed surface measurement are provided, in which a sensor is provided to perform measurements on a carrier in a polishing machine, and a measuring trajectory of the sensor on the carrier is adjusted by controlling the pivoting of a sensor carrier carrying the sensor and the rotation of a rotating platform in the polishing machine in order to achieve uniformed surface measurements of the carrier and real-time constructions of the surface topography. This allows the polishing state of the carrier to be monitored in real time, thereby improving the efficiency of the polishing process. A sensing apparatus for uniformed surface measurement is also provided.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: June 14, 2022
    Assignee: TA LIANG TECHNOLOGY CO., LTD.
    Inventors: Chao-Chang Chen, Jen-Chieh Li, Yong-Jie Ciou, Hsien-Ming Lee, Jian-Shian Lin, Chun-Chen Chen, Ching-Tang Hsueh
  • Publication number: 20220139746
    Abstract: A container includes a container body and an air processing system. The container body includes a plurality of walls defining an interior space for receiving wafers. The air processing system is attached to the container body. The air processing system includes an exchange module, an air extraction module, a first contaminant removal module, a processing module, a second contaminant removal module, a controller module and a power module. The exchange module is coupled to one of the walls of the container body. The air extraction module extracts air from the container body. The first contaminant removal module is coupled to the air extraction module and the exchange module. The processing module is coupled to the air extraction module. The second contaminant removal module is coupled to the processing module and the exchange module. The controller module is configured to turn the air extraction module on and off.
    Type: Application
    Filed: February 24, 2021
    Publication date: May 5, 2022
    Inventors: YOU-CHENG YEH, MAO-CHIH HUANG, YEN-CHING HUANG, YU HSUAN CHUANG, TAI-HSIANG LIN, JIAN-SHIAN LIN
  • Publication number: 20210372764
    Abstract: A system and a method for uniformed surface measurement are provided, in which a sensor is provided to perform measurements on a carrier in a polishing machine, and a measuring trajectory of the sensor on the carrier is adjusted by controlling the pivoting of a sensor carrier carrying the sensor and the rotation of a rotating platform in the polishing machine in order to achieve uniformed surface measurements of the carrier and real-time constructions of the surface topography. This allows the polishing state of the carrier to be monitored in real time, thereby improving the efficiency of the polishing process. A sensing apparatus for uniformed surface measurement is also provided.
    Type: Application
    Filed: May 29, 2020
    Publication date: December 2, 2021
    Inventors: Chao-Chang Chen, Jen-Chieh Li, Yong-Jie Ciou, Hsien-Ming Lee, Jian-Shian Lin, Chun-Chen Chen, Ching-Tang Hsueh
  • Publication number: 20210046606
    Abstract: A method for repairing a polishing pad in real time includes a trimming step, a detection step, and a reconstruction and analysis step. A surface morphology of the polishing pad is reconstructed through detection, and analysis is performed according to the reconstruction, to ensure that a surface of the polishing pad can recover its function after the surface of the polishing pad is trimmed, so that the polishing pad can be used effectively to reduce costs.
    Type: Application
    Filed: August 13, 2020
    Publication date: February 18, 2021
    Applicant: Ta Liang Technology Co., Ltd.
    Inventors: Chao-Chang Chen, Jian-Shian Lin, Chun-Chen Chen, Jen-Chien Li, Hsien-Ming Lee, Ching-Tang Hsueh
  • Patent number: 9127979
    Abstract: An optical measuring device includes a case, a reflective layer and a light collecting lens module. A measuring chamber and a channel, which is connected to the measuring chamber and is connected to an opening of the case, reside in the case. The reflective layer is disposed onto an inner surface of the measuring chamber. The light collecting lens module is located inside the channel. A light beam emits into the channel of the optical measuring device through an opening, passes through the light collecting lens module and enters the measuring chamber afterward.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: September 8, 2015
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chen-Chin Cheng, Jian-Shian Lin, Min-Chieh Chou, Yu-Tang Chen
  • Publication number: 20140175495
    Abstract: A die bonding method and a die bonding structure of a light emitting diode package are provided. The die bonding structure includes a light transmissive adhesive layer formed on a surface of a base plate of a light emitting diode chip, a first metal layer formed on the adhesive layer, a second metal layer formed on a packaging base plate and multiple metallic compound layers. The metallic compound layers are formed by spreading a third metal layer disposed on at least one of the first metal layer and the second metal layer into the first metal layer and the second metal layer after the third metal layer is heated up. The melting points of the first metal layer and the second metal layer are higher than the melting point of the third metal layer.
    Type: Application
    Filed: May 24, 2013
    Publication date: June 26, 2014
    Inventors: Tung-Han Chuang, Jian-Shian Lin, Ying-Tsun Su, Meng-Chi Huang
  • Patent number: 8716737
    Abstract: An LED includes a first intermetallic layer, a first metal thin film layer, an LED chip, a substrate, a second metal thin film layer, and a second intermetallic layer. The first metal thin film layer is located on the first intermetallic layer. The LED chip is located on the first metal thin film layer. The second metal thin film layer is located on the substrate. The second intermetallic layer is located on the second metal thin film layer, and the first intermetallic layer is located on the second intermetallic layer. Materials of the first and the second metal thin film layer are selected from a group consisting of Au, Ag, Cu, and Ni. Materials of the intermetallic layers are selected from a group consisting of a Cu—In—Sn intermetallics, an Ni—In—Sn intermetallics, an Ni—Bi intermetallics, an Au—In intermetallics, an Ag—In intermetallics, an Ag—Sn intermetallics, and an Au—Bi intermetallics.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: May 6, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Hsiu Jen Lin, Jian Shian Lin, Shau Yi Chen, Chieh Lung Lai
  • Publication number: 20140078496
    Abstract: An optical measuring device includes a case, a reflective layer and a light collecting lens module. A measuring chamber and a channel, which is connected to the measuring chamber and is connected to an opening of the case, reside in the case. The reflective layer is disposed onto an inner surface of the measuring chamber. The light collecting lens module is located inside the channel. A light beam emits into the channel of the optical measuring device through an opening, passes through the light collecting lens module and enters the measuring chamber afterward.
    Type: Application
    Filed: September 13, 2013
    Publication date: March 20, 2014
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chen-Chin CHENG, Jian-Shian LIN, Min-Chieh CHOU, Yu-Tang CHEN
  • Patent number: 8659160
    Abstract: A die structure, a manufacturing method and a substrate, wherein the die structure is constituted by a chip on wafer (COW) and the substrate, and the substrate is formed by stacking and then cutting a plurality of thermal and electrical conductive poles and a plurality of insulating material layers. Moreover, the fabricating of the die structure comprises a plurality of COWs carried on a carrier board is bonded on the substrate, the plurality of COWs are in contact with the plurality of thermal and electrical conductive poles on the substrate, and then the carrier board is removed. After that, a phosphor plate is adhered on the plurality of COWs so as to form a stacked structure. Thereafter, the stacked structure is cut, thus forming a plurality of die structures having at least one COW.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: February 25, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Meng-Chi Huang, Han-Ping Yang, Min-Chieh Chou, Tune-Hune Kao, Jung-Kang Peng, Cheng-Hsuan Lin, Jian-Shian Lin
  • Publication number: 20130334561
    Abstract: A method for bonding an LED wafer, a method for manufacturing an LED chip, and a bonding structure are provided. The method for bonding an LED wafer includes the following steps. A first metal film is formed on an LED wafer. A second metal film is formed on a substrate. A bonding material layer whose melting point is lower than or equal to about 110° C. is formed on the surface of the first metal film. The LED wafer is placed on the substrate. The bonding material layer is heated at a pre-solid reaction temperature for a pre-solid time to perform a pre-solid reaction. The bonding material layer is heated at a diffusion reaction temperature for a diffusing time to perform a diffusion reaction, wherein the melting points of the first and the second inter-metallic layers after diffusion reaction are higher than about 110° C.
    Type: Application
    Filed: June 19, 2012
    Publication date: December 19, 2013
    Inventors: Hsiu-Jen LIN, Jian-Shian Lin, Shau-Yi Chen, Jen-Hui Tsai
  • Publication number: 20130139808
    Abstract: The disclosure relates to a solar heating device comprising at least one incidence collector and a thermal container. The thermal container includes at least one light absorbing recess, wherein at least one of the incidence collectors focuses solar beams on a focal point, which is located inside the light absorbing recess. The inner surface of the light absorbing recess converts the energy of the solar beams into radiant heating.
    Type: Application
    Filed: July 23, 2012
    Publication date: June 6, 2013
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: JIAN SHIAN LIN, YAO CHI PENG, TUNG CHUAN WU, TUNG CHENG PAN, YU TANG CHEN, WEN HUA ZHANG
  • Publication number: 20130005055
    Abstract: A light-emitting diode (LED) module and an LED packaging method. As the LED module is packaged under the consideration of candela distribution, each of the lead frames of the LED chips packaged in the LED module is bended for tilting the LED chips by different angles to exhibit various lighting effects. Meanwhile, in the LED packaging method, a plurality of LED chips can be loaded on board rapidly and aligned by one operation to result in less deviation in the candela distribution curve.
    Type: Application
    Filed: July 6, 2012
    Publication date: January 3, 2013
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Jian-Shian Lin, Chieh-Lung Lai, Hsiu-Jen Lin, Weng-Jung Lu, Yi-Ping Huang, Ya-Chun Tu
  • Publication number: 20120256228
    Abstract: An LED includes a first intermetallic layer, a first metal thin film layer, an LED chip, a substrate, a second metal thin film layer, and a second intermetallic layer. The first metal thin film layer is located on the first intermetallic layer. The LED chip is located on the first metal thin film layer. The second metal thin film layer is located on the substrate. The second intermetallic layer is located on the second metal thin film layer, and the first intermetallic layer is located on the second intermetallic layer. Materials of the first and the second metal thin film layer are selected from a group consisting of Au, Ag, Cu, and Ni. Materials of the intermetallic layers are selected from a group consisting of a Cu—In—Sn intermetallics, an Ni—In—Sn intermetallics, an Ni—Bi intermetallics, an Au—In intermetallics, an Ag—In intermetallics, an Ag—Sn intermetallics, and an Au—Bi intermetallics.
    Type: Application
    Filed: June 22, 2012
    Publication date: October 11, 2012
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Hsiu Jen Lin, Jian Shian Lin, Shau Yi Chen, Chieh Lung Lai
  • Patent number: 8235551
    Abstract: A light-emitting diode (LED) module and an LED packaging method. As the LED module is packaged under the consideration of candela distribution, each of the lead frames of the LED chips packaged in the LED module is bended for tilting the LED chips by different angles to exhibit various lighting effects. Meanwhile, in the LED packaging method, a plurality of LED chips can be loaded on board rapidly and aligned by one operation to result in less deviation in the candela distribution curve.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: August 7, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Jian-Shian Lin, Chieh-Lung Lai, Hsiu-Jen Lin, Weng-Jung Lu, Yi-Ping Huang, Ya-Chun Tu
  • Patent number: 8236687
    Abstract: A die-bonding method is suitable for die-bonding a LED chip having a first metal thin-film layer to a substrate. The method includes forming a second metal thin film layer on a surface of the substrate; forming a die-bonding material layer on the second metal thin film layer; placing the LED chip on the die-bonding material layer with the first metal thin film layer contacting the die-bonding material layer; heating the die-bonding material layer at a liquid -solid reaction temperature for a pre-curing time, so as to form a first intermetallic layer and a second intermetallic layer; and heating the die-bonding material layer at a solid-solid reaction temperature for a curing time for performing a solid-solid reaction. The liquid-solid reaction temperature and the solid-solid reaction temperature are both lower than 110° C., and a melting point of the first and second intermetallic layers after the solid-solid reaction is higher than 200° C.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: August 7, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Hsiu-Jen Lin, Jian-Shian Lin, Shau-Yi Chen, Chieh-Lung Lai
  • Publication number: 20120168950
    Abstract: A die structure, a manufacturing method and a substrate, wherein the die structure is constituted by a chip on wafer (COW) and the substrate, and the substrate is formed by stacking and then cutting a plurality of thermal and electrical conductive poles and a plurality of insulating material layers. Moreover, the fabricating of the die structure comprises a plurality of COWs carried on a carrier board is bonded on the substrate, the plurality of COWs are in contact with the plurality of thermal and electrical conductive poles on the substrate, and then the carrier board is removed. After that, a phosphor plate is adhered on the plurality of COWs so as to form a stacked structure. Thereafter, the stacked structure is cut, thus forming a plurality of die structures having at least one COW.
    Type: Application
    Filed: July 19, 2011
    Publication date: July 5, 2012
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Meng-Chi Huang, Han-Ping Yang, Min-Chieh Chou, Tune-Hune Kao, Jung-Kang Peng, Cheng-Hsuan Lin, Jian-Shian Lin
  • Publication number: 20110156071
    Abstract: A multi-stack package light emitting diode (LED) includes an LED chip, a first fluorescent powder layer, a first optical bandpass filter layer and a second fluorescent powder layer. The LED chip generates an LED light. The first fluorescent powder layer and the second fluorescent powder layer respectively have a first fluorescent powder and a second fluorescent powder. The first fluorescent powder and the second fluorescent powder are excited by the LED light to respectively generate a first excitation light and a second excitation light. The first optical bandpass filter layer allows the LED light and the first excitation light to pass and reflects the second excitation light. A wavelength of the LED light is shorter than a wavelength of the second excitation light. The wavelength of the second excitation light is shorter than a wavelength of the first excitation light. Therefore, the multi-stack package LED improves a light emission efficiency.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 30, 2011
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chia Shen Cheng, Jian Shian Lin, Shau Yi Chen, Hsiu Jen Lin, Yao Chi Peng