Patents by Inventor Jian Xun Li

Jian Xun Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7238971
    Abstract: A lateral heterojunction bipolar transistor (HBT) comprising a semiconductor substrate having having a first insulating layer over the semiconductor substrate. A base trench is formed in a first silicon layer over the first insulating layer to form a collector layer over an exposed portion of the semiconductor substrate and an emitter layer over the first insulating layer. A semiconductive layer is formed on the sidewalls of the base trench to form a collector structure in contact with the collector layer and an emitter structure in contact with the emitter layer. A base structure is formed in the base trench. A plurality of connections is formed through an interlevel dielectric layer to the collector layer, the emitter layer, and the base structure. The base structure preferably is a compound semiconductive material of silicon and at least one of silicon-germanium, silicon-germanium-carbon, and combinations thereof.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: July 3, 2007
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Jian Xun Li, Lap Chan, Purakh Raj Verma, Jia Zhen Zheng, Shao-fu Sanford Chu
  • Patent number: 7049201
    Abstract: A heterojunction bipolar transistor (HBT), and manufacturing method therefor, comprising a semiconductor substrate having a collector region, a number of insulating layers over the semiconductor substrate, at least one of the number of insulating layers having a base cavity over the collector region, a base structure of a compound semiconductive material in the base cavity, a window in the insulating layer over the base cavity, an emitter structure in the window, an interlevel dielectric layer, and connections through the interlevel dielectric layer to the base structure, the emitter structure, and the collector region. The base structure and the emitter structure preferably are formed in the same processing chamber.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: May 23, 2006
    Assignee: Chartered Semionductor Manufacturing Ltd.
    Inventors: Purakh Raj Verma, Shao-Fu Sanford Chu, Lap Chan, Jian Xun Li, Jia Zhen Zheng
  • Patent number: 7022578
    Abstract: A heterojunction bipolar transistor (HBT), and manufacturing method therefor, comprising a semiconductor substrate having a collector region, an intrinsic base region of a compound semiconductive material over the collector region, an extrinsic base region, an emitter structure, an interlevel dielectric layer over the collector region, extrinsic base region and emitter structure, and connections through the interlevel dielectric layer to the base region, the emitter structure, and the collector region. The emitter structure is formed by forming a reverse emitter window over the intrinsic base region, which subsequently is etched to form an emitter window having a multi-layer reverse insulating spacer therein.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: April 4, 2006
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Purakh Raj Verma, Shao-fu Sanford Chu, Lap Chan, Jian Xun Li, Zhen Jia Zheng
  • Patent number: 6972237
    Abstract: A method for manufacturing a heterojunction bipolar transistor is provided. An intrinsic collector structure is formed on a substrate. An extrinsic base structure partially overlaps the intrinsic collector structure. An intrinsic base structure is formed adjacent the intrinsic collector structure and under the extrinsic base structure. An emitter structure is formed adjacent the intrinsic base structure. An extrinsic collector structure is formed adjacent the intrinsic collector structure. A plurality of contacts is formed through an interlevel dielectric layer to the extrinsic collector structure, the extrinsic base structure, and the emitter structure.
    Type: Grant
    Filed: December 1, 2003
    Date of Patent: December 6, 2005
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Purakh Raj Verma, Shao-fu Sanford Chu, Lap Chan, Jia Zhen Zheng, Jian Xun Li
  • Patent number: 6924202
    Abstract: A heterojunction bipolar transistor (HBT), and manufacturing method therfor, comprising a semiconductor substrate having a collector region is provided. A base contact layer is formed over the collector region, and a base trench is formed in the base contact layer and the collector region. An intrinsic base structure having a sidewall portion and a bottom portion is formed in the base trench. An insulating spacer is formed over the sidewall portion of the intrinsic base structure, and an emitter structure is formed over the insulating spacer and the bottom portion of the intrinsic base structure. An interlevel dielectric layer is formed over the base contact layer and the emitter structure. Connections are formed through the interlevel dielectric layer to the collector region, the base contact layer, and the emitter structure. The intrinsic base structure is silicon and at least one of silicon-germanium, silicon-germanium-carbon, and combinations thereof.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: August 2, 2005
    Assignee: Chartered Semiconductor Manufacturing, Ltd.
    Inventors: Jian Xun Li, Lap Chan, Purakh Raj Verma, Jia Zhen Zheng, Shao-fu Sanford Chu
  • Patent number: 6908824
    Abstract: A method for manufacturing a lateral heterojunction bipolar transistor (HBT) is provided comprising a semiconductor substrate having a first insulating layer over the semiconductor substrate. A base trench is formed in a first silicon layer over the first insulating layer to form a collector layer over an exposed portion of the semiconductor substrate and an emitter layer over the first insulating layer. A semiconductive layer is formed on the sidewalls of the base trench to form a collector structure in contact with the collector layer and an emitter structure in contact with the emitter layer. A base structure is formed in the base trench. A plurality of connections is formed through an interlevel dielectric layer to the collector layer, the emitter layer, and the base structure. The base structure preferably is a compound semiconductive material of silicon and at least one of silicon-germanium, silicon-germanium-carbon, and combinations thereof.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: June 21, 2005
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Jian Xun Li, Lap Chan, Purakh Raj Verma, Jia Zhen Zheng, Shao-fu Sanford Chu
  • Patent number: 6709918
    Abstract: A method for making concurrently metal-insulator-metal (MIM) capacitors and a metal resistors in a Cu damascene back-end-of-line process is achieved. The method forms a Cu capacitor bottom metal plate using a dual-damascene process. A Si3N4 or SiC is deposited to form a capacitor dielectric layer on the Cu bottom plate. A metal layer having an upper etch-stop layer is deposited and patterned to form concurrently capacitor top plates and metal resistors. The patterning is terminated in the capacitor dielectric layer to prevent Cu particle contamination. An insulating layer is deposited and via holes are etched to the capacitor top plates and the metal resistors using the upper etch-stop layer to prevent overetching and damage. The method provides a MIM capacitor using only one additional photoresist mask while improving process yield.
    Type: Grant
    Filed: December 2, 2002
    Date of Patent: March 23, 2004
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Chit Hwei Ng, Jian Xun Li, Kok Wai Chew, Tjin Tjin Tjoa, Chaw Sing Ho, Shao Fu Sanford Chu
  • Publication number: 20030143828
    Abstract: A method for making low sheet resistance local metal interconnections and improved transistor performance is described. The method involves patterning a polysilicon layer and a silicon nitride (Si3N4) cap layer over device areas to form FET gate electrodes, and the patterned polysilicon extends over the field oxide regions to form portions of the local interconnections. After forming source/drain areas and sidewall spacers on the FET gate electrodes, a silicon oxide (SiO2) insulating layer is deposited and polished back to the Si3N4 cap. The Si3N4 is then selectively removed over the patterned polysilicon layer, leaving recesses in the SiO2 layer. After etching contact openings in the SiO2 layer to the substrate, a high electrically conducting metal layer, having a barrier layer, is deposited and patterned to complete the local interconnections.
    Type: Application
    Filed: January 28, 2003
    Publication date: July 31, 2003
    Applicant: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Mei Sheng Zhou, Vijai Kumar Chhagan, Jian Xun Li
  • Patent number: 6534393
    Abstract: A method for making low sheet resistance local metal interconnections and improved transistor performance is described. The method involves patterning a polysilicon layer and a silicon nitride (Si3N4) cap layer over device areas to form FET gate electrodes, and the patterned polysilicon extends over the field oxide regions to form portions of the local interconnections. After forming source/drain areas and sidewall spacers on the FET gate electrodes, a silicon oxide (SiO2) insulating layer is deposited and polished back to the Si3N4 cap. The Si3N4 is then selectively removed over the patterned polysilicon layer, leaving recesses in the SiO2 layer. After etching contact openings in the SiO2 layer to the substrate, a high electrically conducting metal layer, having a barrier layer, is deposited and patterned to complete the local interconnections.
    Type: Grant
    Filed: January 25, 1999
    Date of Patent: March 18, 2003
    Assignees: Chartered Semiconductor Manufacturing Ltd., National University of Singapore, Nanyang Technological University of Singapore, Institute of Microelectronics
    Inventors: Mei Sheng Zhou, Vijai Kumar Chhagan, Jian Xun Li
  • Patent number: 6524963
    Abstract: A method etching an organic-based, low dielectric constant material in the manufacture of an integrated circuit device has been achieved. Organic materials without silicon and organic materials without fluorine can be etched by using, for example, hydrazine or ammonia gas. Organic materials with silicon can also be etched with the addition of a fluorine-containing or chlorine-containing gas. A semiconductor substrate is provided. A low dielectric constant organic-based material is deposited overlying the semiconductor substrate. The low dielectric constant organic-based material is etched to form desirable features using a plasma containing a gas comprising a nitrogen and hydrogen containing molecule, and the integrated circuit device is completed.
    Type: Grant
    Filed: October 20, 1999
    Date of Patent: February 25, 2003
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Mei Sheng Zhou, Simon Chooi, Jian Xun Li
  • Patent number: 6489191
    Abstract: A method for forming a CMOS transistor gate with a self-aligned. channel implant. A semiconductor structure having a first active area is provided. A first insulating layer is formed on the semiconductor structure, and a second insulating layer is formed on the first insulating layer. The second insulating layer is patterned using a poly reverse mask and an etch selective to the first insulating layer to form a first channel implant opening, and the poly reverse mask is removed. A first channel implant mask is formed exposing the first channel implant opening. Impurity ions are implanted through the first channel implant opening to form a first threshhold adjust region and a first anti-punchthrough region. A gate layer is formed over the semiconductor structure, and the first gate layer is planarized to form a gate electrode. The second insulating layer is removed, and lightly doped source and drain regions, sidewall spacers and source and drain regions can be formed adjacent the gate electrode.
    Type: Grant
    Filed: May 8, 2002
    Date of Patent: December 3, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Kai Shao, Yimin Wang, Jian Xun Li, Shao-Fu Sanford Chu
  • Publication number: 20020127808
    Abstract: A method for forming a CMOS transistor gate with a self-aligned channel implant. A semiconductor structure having a first active area is provided. A first insulating layer is formed on the semiconductor structure, and a second insulating layer is formed on the first insulating layer. The second insulating layer is patterned using a poly reverse mask and an etch selective to the first insulating layer to form a first channel implant opening, and the poly reverse mask is removed. A first channel implant mask is formed exposing the first channel implant opening. Impurity ions are implanted through the first channel implant opening to form a first threshhold adjust region and a first anti-punchthrough region. A gate layer is formed over the semiconductor structure, and the first gate layer is planarized to form a gate electrode. The second insulating layer is removed, and lightly doped source and drain regions, sidewall spacers and source and drain regions can be formed adjacent the gate electrode.
    Type: Application
    Filed: May 8, 2002
    Publication date: September 12, 2002
    Applicant: CHARTERED SEMICONDUCTOR MANUFACTURING LTD.
    Inventors: Kai Shao, Yimin Wang, Jian Xun Li, Shao-Fu Sanford Chu
  • Patent number: 6410394
    Abstract: A method for forming a CMOS transistor gate with a self-aligned channel implant. A semiconductor structure having a first active area is provided. A first insulating layer is formed on the semiconductor structure, and a second insulating layer is formed on the first insulating layer. The second insulating layer is patterned using a poly reverse mask and an etch selective to the first insulating layer to form a first channel implant opening, and the poly reverse mask is removed. A first channel implant mask is formed exposing the first channel implant opening. Impurity ions are implanted through the first channel implant opening to form a first threshold adjust region and a first anti-punchthrough region. A gate layer is formed over the semiconductor structure, and the first gate layer is planarized to form a gate electrode. The second insulating layer is removed, and lightly doped source and drain regions, sidewall spacers and source and drain regions can be formed adjacent the gate electrode.
    Type: Grant
    Filed: December 17, 1999
    Date of Patent: June 25, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Kai Shao, Yimin Wang, Jian Xun Li, Shao-Fu Sanford Chu
  • Patent number: 6395631
    Abstract: A method for forming, within a low dielectric constant dielectric layer formed upon a substrate employed within a microelectronics fabrication, a conductor pattern employing a hard mask cap layer. There is first provided a substrate having conductor regions formed therein upon which is formed a low dielectric constant dielectric layer. There is then formed over the substrate a silicon containing hard mask cap layer. There is then formed over the hard mask cap layer a patterned photoresist etch mask layer. There is then subtractively etched employing the patterned photoresist etch mask layer and a first subtractive etching environment the pattern into the hard mask layer. There is then subtractively etched employing the patterned hard mask layer and a second etching environment the pattern into the low dielectric constant dielectric layer, simultaneously stripping the photoresist etch mask layer.
    Type: Grant
    Filed: August 4, 1999
    Date of Patent: May 28, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Yi Xu, Jian Xun Li
  • Patent number: 6140206
    Abstract: A method of forming a shallow trench isolation trenches in a silicon substrate of an integrated circuit device is achieved. A silicon substrate is provided. A buffer layer is deposited overlying the silicon substrate. An etching endpoint layer is deposited overlying the buffer layer. A silicon layer is deposited layer overlying the etching endpoint layer. A photoresist layer is coated overlying the silicon layer. The photoresist layer is developed wherein the photoresist layer is removed where the trenches are planned. The silicon layer, the etching endpoint layer, and the buffer layer are etched through to expose the top surface of the silicon substrate. The silicon layer and the silicon substrate layer are etched until the top surface of the etching endpoint layer is exposed, and the trenches are thereby formed. The integrated circuit device is completed.
    Type: Grant
    Filed: June 14, 1999
    Date of Patent: October 31, 2000
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Jian Xun Li, Qing Hua Zhong, Mei Sheng Zhou
  • Patent number: 5948701
    Abstract: A method for forming a via through a dielectric layer within a microelectronics fabrication. There is first provided a substrate employed within a microelectronics fabrication. There is then formed upon the substrate a pair of microelectronic structures. There is then formed sequentially upon the substrate including the pair of microelectronic structures a first conformal dielectric layer followed by a second conformal dielectric layer followed by a third dielectric layer, where the second conformal dielectric layer serves as an etch stop layer with respect to the third dielectric layer in a first plasma etch method employed in forming in part a via through the third dielectric layer, the second conformal dielectric layer and the first conformal dielectric layer at a location between the pair of microelectronic structures.
    Type: Grant
    Filed: July 30, 1997
    Date of Patent: September 7, 1999
    Assignee: Chartered Semiconductor Manufacturing, Ltd.
    Inventors: Simon Chooi, Mei-Sheng Zhou, Jian Xun Li
  • Patent number: 5930627
    Abstract: Silicon enriched silicon oxynitride is used in applications both as an independent etch stop and as a cap layer and sidewall component over polysilicon gate electrodes in order to prevent insulator thinning and shorts caused by a mis-aligned contact mask. In one embodiment a silicon enriched silicon oxynitride layer is placed over a polysilicon gate with conventional sidewalls and insulative cap. In another embodiment the insulative cap and the sidewalls are formed of a silicon enriched silicon oxinitride. Etching of contact openings in the subsequently deposited insulative layer is suppressed by the silicon enriched silicon oxynitride if it is engaged because of a mis-aligned contact mask. In another embodiment a polysilicon stack edge of a memory device is protected by a conformal silicon oxynitride layer during etching of a self-aligned-source (SAS) region. These embodiments are accomplished with minimal and virtually negligible increase in process complexity or cost.
    Type: Grant
    Filed: May 5, 1997
    Date of Patent: July 27, 1999
    Assignee: Chartered Semiconductor Manufacturing Company, Ltd.
    Inventors: Mei Sheng Zhou, Sheau-Tan Loong, Koon Lay Denise Tan, Jian Xun Li, Wing Hong Chiu, Kok Hiang Stephanie Tang
  • Patent number: 5792692
    Abstract: A process for fabricating a large surface area, storage node structure, for a DRAM device, has been developed. The storage node structure is comprised of a lower level polysilicon structure, exhibiting a "twin hammer tree" shape, and connected to an upper polysilicon level, exhibiting a "branch" type shape. The fabrication process used to create this storage node structure, features various deposition procedures, used for insulator and polysilicon layers, and various anisotropic and isotropic, dry etch procedures, as well as wet etch procedures, used for creation of the "twin hammer tree" shaped structure.
    Type: Grant
    Filed: August 18, 1997
    Date of Patent: August 11, 1998
    Assignee: Chartered Semiconductor Manufacturing, Ltd.
    Inventors: Jian-Xun Li, Simon Chooi, Mei-Sheng Zhou