Patents by Inventor Jian-Yu Li
Jian-Yu Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12254261Abstract: A method includes designing a plurality of cells for a semiconductor device, wherein designing the plurality of cells comprises reserving a routing track of a plurality of routing tracks within each of the plurality of cells, wherein each of the plurality of cells comprises signal lines, and the reserved routing track is free of the signal lines. The method includes placing a first cell and a second cell of the plurality of cells in a layout of the semiconductor device. The method includes determining whether any power rails overlap with any of the plurality of routing tracks other than the reserved routing track in the second cell. The method includes adjusting a distance between the first cell and the second cell in response to a determination that at least one power rail overlaps with at least one routing track other than the reserved routing track.Type: GrantFiled: December 19, 2023Date of Patent: March 18, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Jian-Sing Li, Jung-Chan Yang, Ting Yu Chen, Ting-Wei Chiang
-
Publication number: 20250072007Abstract: A MRAM layout structure with multiple unit cells, including a first word line, a second word line and a third word line extending through active areas, wherein two ends of a first MTJ are connected respectively to a second active area and one end of a second MTJ, and two ends of a third MTJ are connected respectively to a third active area and one end of a fourth MTJ, and a first bit line and a second bit line connected respectively to the other end of the second MTJ and the other end of the fourth MTJ.Type: ApplicationFiled: November 13, 2024Publication date: February 27, 2025Applicant: UNITED MICROELECTRONICS CORP.Inventors: Yi-Ting Wu, Cheng-Tung Huang, Jen-Yu Wang, Yung-Ching Hsieh, Po-Chun Yang, Jian-Jhong Chen, Bo-Chang Li
-
Publication number: 20250064345Abstract: A gait evaluating system including a processor is provided. The processor identifies whether a gait type of the user belongs to a normal gait, a non-neuropathic gait or a neuropathic gait based on step feature values of a user and walking limb feature values of the user. In response to that the gait type of the user belongs to the non-neuropathic gait, the processor controls the display panel to display a first auxiliary information, a second auxiliary information, and a third auxiliary information. The first auxiliary information indicates a potential sarcopenia of the user. The second auxiliary information indicates a dietary guideline for muscle building and muscle strengthening. The third auxiliary information shows a motion instruction video for regaining or maintaining muscle strength of the user.Type: ApplicationFiled: October 18, 2024Publication date: February 27, 2025Applicant: Industrial Technology Research InstituteInventors: Je-Ping Hu, Keng-Hsun Lin, Shih-Fang Yang Mao, Pin-Chou Li, Jian-Hong Wu, Szu-Ju Li, Hui-Yu Cho, Yu-Chang Chen, Yen-Nien Lu, Jyun-Siang Hsu, Nien-Ya Lee, Kuan-Ting Ho, Ming-Chieh Tsai, Ching-Yu Huang
-
Patent number: 12202115Abstract: A rotary power tool comprises a drive mechanism including an electric motor and a transmission, a housing enclosing at least a portion of the drive mechanism, a spindle rotatable in response to receiving torque from the drive mechanism, a first ratchet coupled for co-rotation with the spindle, a second ratchet rotationally fixed to the housing, a sleeve bushing supported by the housing, and a bearing rotatably supporting the spindle. The spindle has an outer race. And, the outer race of the bearing moves along the sleeve bushing during reciprocation of the spindle when the first ratchet and second ratchet are engaged.Type: GrantFiled: September 7, 2022Date of Patent: January 21, 2025Assignee: MILWAUKEE ELECTRIC TOOL CORPORATIONInventors: Ryan A. Dedrickson, Ian Allen Duncan, Tian Yu, Jian Wei Li
-
Patent number: 8971388Abstract: An RF receiver/transmitter apparatus for carrier aggregation is disclosed, to provide a routing circuitry formed by a plurality of mixer modules for achieving both the function of carrier aggregation and the mixing frequency process of signals. This architecture allows sharing an RF front-end, improving degree of integration, and reducing hardware cost and circuitry power consumption. In addition, in the process of reception and transmission, the apparatus may perform different processing and configuration for each sub-channel to increase circuit design flexibility. The receiver apparatus includes at least one antenna, a first signal processing unit, a routing mixer device, a second signal processing unit and a digital signal processor (DSP); and the routing mixer device includes a plurality of mixer module and a plurality of current/voltage adders to achieve signal routing control through opening or closing of the mixer, switching the signal transmission path or switching the signal synthesizer.Type: GrantFiled: April 26, 2013Date of Patent: March 3, 2015Assignee: Industrial Technology Research InstituteInventors: Chia-Hao Tu, Chang-Ming Lai, Jian-Yu Li
-
Publication number: 20140169418Abstract: An RF receiver/transmitter apparatus for carrier aggregation is disclosed, to provide a routing circuitry formed by a plurality of mixer modules for achieving both the function of carrier aggregation and the mixing frequency process of signals. This architecture allows sharing an RF front-end, improving degree of integration, and reducing hardware cost and circuitry power consumption. In addition, in the process of reception and transmission, the apparatus may perform different processing and configuration for each sub-channel to increase circuit design flexibility. The receiver apparatus includes at least one antenna, a first signal processing unit, a routing mixer device, a second signal processing unit and a digital signal processor (DSP); and the routing mixer device includes a plurality of mixer module and a plurality of current/voltage adders to achieve signal routing control through opening or closing of the mixer, switching the signal transmission path or switching the signal synthesizer.Type: ApplicationFiled: April 26, 2013Publication date: June 19, 2014Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTEInventors: Chia-Hao TU, Chang-Ming Lai, Jian-Yu Li
-
Patent number: 8422539Abstract: A multi-carrier receiver, multi-carrier transmitter and a multi-carrier transceiver system are provided. The multi-carrier receiver includes a first processing unit, a router and a second processing unit. The first processing unit has M first processing paths, applies intensity processing on at least a RF signal for outputting sub-carrier signals. The router has M input terminals and N output terminals, where the M input terminals are respectively coupled to the M first processing paths and receive the sub-carrier signals. The router outputs the sub-carrier signals to the N output terminals and the received signal at each output terminal of the router includes the sub-carrier signal at each input terminal. The second processing unit has N second processing paths respectively coupled to the N output terminals for demodulating the sub-carrier signals and applies an analog-to-digital conversion on the demodulated signals for generating digital signals, where M and N are greater than 0.Type: GrantFiled: July 1, 2011Date of Patent: April 16, 2013Assignee: Industrial Technology Research InstituteInventors: Chang-Ming Lai, Ping-Hsun Wu, Jian-Yu Li
-
Patent number: 8396099Abstract: A multi-carrier receiver, multi-carrier transmitter and a multi-carrier transceiver system are provided. The multi-carrier receiver includes at least a first processing unit, a routed switch and a second processing unit. The first processing unit has M first processing paths, performs intensity processing to at least one RF signal for outputting sub-carrier signals. The routed switch has M input terminals and N output terminals, where the M input terminals are respectively coupled to the M first processing paths and receive the sub-carrier signals. The routed switch connects each input terminal to at least one output terminal or none of the output terminals according to a control signal. The second processing unit has N second processing paths respectively coupled to the N output terminals for demodulating the sub-carrier signals and performing an analog-to-digital conversion to the demodulated signals for generating digital signals, where M and N are greater than 0.Type: GrantFiled: September 24, 2010Date of Patent: March 12, 2013Assignee: Industrial Technology Research InstituteInventors: Chang-Ming Lai, Ping-Hsun Wu, Jian-Yu Li
-
Publication number: 20120044975Abstract: A multi-carrier receiver, multi-carrier transmitter and a multi-carrier transceiver system are provided. The multi-carrier receiver includes at least a first processing unit, a routed switch and a second processing unit. The first processing unit has M first processing paths, performs intensity processing to at least one RF signal for outputting sub-carrier signals. The routed switch has M input terminals and N output terminals, where the M input terminals are respectively coupled to the M first processing paths and receive the sub-carrier signals. The routed switch connects each input terminal to at least one output terminal or none of the output terminals according to a control signal. The second processing unit has N second processing paths respectively coupled to the N output terminals for demodulating the sub-carrier signals and performing an analog-to-digital conversion to the demodulated signals for generating digital signals, where M and N are greater than 0.Type: ApplicationFiled: September 24, 2010Publication date: February 23, 2012Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTEInventors: Chang-Ming Lai, Ping-Hsun Wu, Jian-Yu Li
-
Publication number: 20120044976Abstract: A multi-carrier receiver, multi-carrier transmitter and a multi-carrier transceiver system are provided. The multi-carrier receiver includes a first processing unit, a router and a second processing unit. The first processing unit has M first processing paths, applies intensity processing on at least a RF signal for outputting sub-carrier signals. The router has M input terminals and N output terminals, where the M input terminals are respectively coupled to the M first processing paths and receive the sub-carrier signals. The router outputs the sub-carrier signals to the N output terminals and the received signal at each output terminal of the router includes the sub-carrier signal at each input terminal. The second processing unit has N second processing paths respectively coupled to the N output terminals for demodulating the sub-carrier signals and applies an analog-to-digital conversion on the demodulated signals for generating digital signals, where M and N are greater than 0.Type: ApplicationFiled: July 1, 2011Publication date: February 23, 2012Applicant: Industrial Technology Research InstituteInventors: Chang-Ming Lai, Ping-Hsun Wu, Jian-Yu Li
-
Publication number: 20070018718Abstract: The microwave transmitter of the present invention can perform two-terminal dynamic modulation with respect to the voltage supply terminal and the RF input terminal of a RF power amplifier. The microwave transmitter of the present invention comprises a first modulator and a second modulator. The first modulator uses the baseband digital delta-sigma modulation technique to process the envelope signal and outputs this signal to the voltage supply terminal of the RF power amplifier as a supply voltage. The second modulator uses the baseband digital pre-distortion technique to process the IQ-modulated carrier and outputs this signal to the RF input terminal of the RF power amplifier as a RF input signal. Thereby, the RF power amplifier can highly efficiently reconstruct the power-amplified RF modulated carrier without distortion at the RF output terminal.Type: ApplicationFiled: June 19, 2006Publication date: January 25, 2007Applicants: National Sun Yat-sen University, Industrial Technology Research InstituteInventors: Tzyy-Sheng Horng, Yuan Chen, Je-Kuan Jau, Jian-Yu Li, Chang-Ming Lai