Patents by Inventor Jiandong Fang

Jiandong Fang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9707758
    Abstract: A micro-fluid ejection head has an ejection chip to expel fluid. It connects to a laminate construct. The construct has vertically configured wiring layers interspersed with non-conductive layers, such as carbon fiber layers. An upper of the wiring layers electrically connects to the ejection chip. The upper layer may also support a planar undersurface of the chip directly on a surface or in a recessed pocket. The two can connect with a die bond, such as one having silica or boron nitride. Fluid connections exist between ink feed slots of the chip and the laminate construct. A silicon tile or other material may also fluidly interconnect with the two. A plastic manifold optionally supports the laminate construct and may fluidly connect to it. The wiring layers of the laminate contemplate ground, power, and various bond pads. Other construct layers contemplate prepreg or core FR4 layers.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: July 18, 2017
    Assignee: Funai Electric Co., Ltd.
    Inventors: Frank Edward Anderson, Richard Earl Corley, Michael John Dixon, Jiandong Fang, Jeanne Marie Saldanha Singh
  • Publication number: 20160016406
    Abstract: A micro-fluid ejection head has an ejection chip to expel fluid. It connects to a laminate construct. The construct has vertically configured wiring layers interspersed with non-conductive layers, such as carbon fiber layers. An upper of the wiring layers electrically connects to the ejection chip. The upper layer may also support a planar undersurface of the chip directly on a surface or in a recessed pocket. The two can connect with a die bond, such as one having silica or boron nitride. Fluid connections exist between ink feed slots of the chip and the laminate construct. A silicon tile or other material may also fluidly interconnect with the two. A plastic manifold optionally supports the laminate construct and may fluidly connect to it. The wiring layers of the laminate contemplate ground, power, and various bond pads. Other construct layers contemplate prepreg or core FR4 layers.
    Type: Application
    Filed: September 29, 2015
    Publication date: January 21, 2016
    Inventors: Frank Edward ANDERSON, Richard Earl CORLEY, Michael John DIXON, Jiandong FANG, Jeanne Marie Saldanha SINGH
  • Publication number: 20150283810
    Abstract: Disclosed is a fluid ejection device for an inkjet printer that includes a substrate. The substrate includes at least one trench and a plurality of fluid flow vias configured in at least three parallel rows arranged over each trench of the at least one trench. Each row of the at least three parallel rows includes a set of fluid flow vias from the plurality of fluid flow vias arranged in one of a uniform manner and a non-uniform manner such that each fluid flow via of the set of fluid flow vias is configured in a spaced-apart relation with an adjacent fluid flow via. The each fluid flow via is configured in a diagonal relationship relative to a neighboring fluid flow via of an adjacent row of the at least three parallel rows. The fluid ejection device also includes a flow feature layer and a nozzle plate.
    Type: Application
    Filed: June 19, 2015
    Publication date: October 8, 2015
    Inventors: Jiandong FANG, Paul GRAF, Andrew MCNEES
  • Patent number: 9144969
    Abstract: A micro-fluid ejection head has an ejection chip to expel fluid. It connects to a laminate construct. The construct has vertically configured wiring layers interspersed with non-conductive layers, such as carbon fiber layers. An upper of the wiring layers electrically connects to the ejection chip. The upper layer may also support a planar undersurface of the chip directly on a surface or in a recessed pocket. The two can connect with a die bond, such as one having silica or boron nitride. Fluid connections exist between ink feed slots of the chip and the laminate construct. A silicon tile or other material may also fluidly interconnect with the two. A plastic manifold optionally supports the laminate construct and may fluidly connect to it. The wiring layers of the laminate contemplate ground, power, and various bond pads. Other construct layers contemplate prepreg or core FR4 layers.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: September 29, 2015
    Assignee: Funai Electric Co., Ltd.
    Inventors: Frank Edward Anderson, Richard Earl Corley, Michael John Dixon, Jiandong Fang, Jeanne Marie Saldanha Singh
  • Patent number: 9079409
    Abstract: Disclosed is a fluid ejection device for an inkjet printer that includes a substrate. The substrate includes at least one trench and a plurality of fluid flow vias configured in at least three parallel rows arranged over each trench of the at least one trench. Each row of the at least three parallel rows includes a set of fluid flow vias from the plurality of fluid flow vias arranged in one of a uniform manner and a non-uniform manner such that each fluid flow via of the set of fluid flow vias is configured in a spaced-apart relation with an adjacent fluid flow via. The each fluid flow via is configured in a diagonal relationship relative to a neighboring fluid flow via of an adjacent row of the at least three parallel rows. The fluid ejection device also includes a flow feature layer and a nozzle plate.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: July 14, 2015
    Inventors: Jiandong Fang, Paul Graf, Andrew McNees
  • Patent number: 8888242
    Abstract: Disclosed is a fluid ejection device for an inkjet printer that includes a substrate having at least one fluid flow channel configured within a bottom portion of the substrate. Each fluid flow channel of the at least one fluid flow channel is configured by etching the bottom portion. The substrate also includes a plurality of fluid flow vias configured within a top portion of the substrate. Each fluid flow via of the plurality of fluid flow vias is configured by etching the top portion. The each fluid flow via is further configured to be in fluid communication with a corresponding fluid flow channel through an isotropically etched cavity configured below the each fluid flow via and fluidically coupled to the corresponding fluid flow channel. The fluid ejection device also includes a flow feature layer and a nozzle plate. Further disclosed are methods for fabricating fluid ejection devices.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: November 18, 2014
    Assignee: Funai Electric Co., Ltd.
    Inventors: Jiandong Fang, Xiaoming Wu
  • Patent number: 8844137
    Abstract: Disclosed is an ejection device for an inkjet printer that includes an ejection chip having a substrate and at least one fluid ejecting element. The ejection device further includes a fluidic structure configured over the ejection chip. The fluidic structure includes a nozzle plate composed of an organic material and includes a plurality of nozzles. The fluidic structure further includes a flow feature layer configured in between the ejection chip and the nozzle plate. The flow feature layer is composed of an organic material and includes a plurality of flow features. Furthermore, the fluidic structure includes a liner layer encapsulating the nozzle plate. The liner layer further at least partially encapsulates each flow feature of the plurality of flow features. The liner layer is composed of an inorganic material. Further disclosed is a method for fabricating the ejection device.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: September 30, 2014
    Assignee: Funai Electric Co., Ltd.
    Inventors: Xiaorong Cai, Jiandong Fang, Xiaoming Wu, Elaine Yeap Money, Eunki Hong, Yimin Guan, Burton Joyner, II, Sean Terrance Weaver, David Graham, Zach Reitmeier
  • Patent number: 8777376
    Abstract: A micro-fluid ejection head has multiple ejection chips joined adjacently to create a lengthy array across a media to-be-imaged. The chips have fluid firing elements arranged along skewed fluid vias to enable seamless stitching of fluid ejections. The firing elements are energized to eject fluid and ones are spaced according to colors or fluid types. Overlapping firing elements serve redundancy efforts during imaging for reliable print quality. Variable chips sizes and shapes are disclosed as are relationships between differently colored fluid vias. Skew angles range variously each with noted advantages. Singulating chips from larger wafers provide still further embodiments.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: July 15, 2014
    Assignee: Funai Electric Co., Ltd.
    Inventors: Frank Edward Anderson, Richard Earl Corley, Jiandong Fang
  • Publication number: 20140092171
    Abstract: A micro-fluid ejection head has an ejection chip to expel fluid. It connects to a laminate construct. The construct has vertically configured wiring layers interspersed with non-conductive layers, such as carbon fiber layers. An upper of the wiring layers electrically connects to the ejection chip. The upper layer may also support a planar undersurface of the chip directly on a surface or in a recessed pocket. The two can connect with a die bond, such as one having silica or boron nitride. Fluid connections exist between ink feed slots of the chip and the laminate construct. A silicon tile or other material may also fluidly interconnect with the two. A plastic manifold optionally supports the laminate construct and may fluidly connect to it. The wiring layers of the laminate contemplate ground, power, and various bond pads. Other construct layers contemplate prepreg or core FR4 layers.
    Type: Application
    Filed: December 5, 2013
    Publication date: April 3, 2014
    Applicant: FUNAI ELECTRIC CO., LTD
    Inventors: Frank Edward ANDERSON, Richard Earl CORLEY, Michael John DIXON, Jiandong FANG, Jeanne Marie Saldanha SINGH
  • Patent number: 8678557
    Abstract: Disclosed is a substrate structure for an ejection chip that includes a first substrate layer, a second substrate layer disposed beneath the first substrate layer, and an intermediate layer configured between the first substrate layer and the second substrate layer. The substrate structure also includes a plurality of fluid channels configured within the second substrate layer. Further, the substrate structure includes a plurality of fluid ports configured within the first substrate layer. At least one fluid port of the plurality of fluid ports is configured in alignment with a corresponding fluid channel of the plurality of fluid channels. Furthermore, the substrate structure includes a plurality of slots configured within the intermediate layer such that the at least one fluid port is in fluid communication with the corresponding fluid channel. Further disclosed is a method for fabricating the substrate structure and an ejection chip employing the substrate structure.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: March 25, 2014
    Assignee: Funai Electric Co., Ltd.
    Inventors: Jiandong Fang, James Mrvos
  • Patent number: 8657411
    Abstract: Disclosed is a fluid ejection device that includes a nozzle plate. The nozzle plate includes a plurality of nozzles. Further, the fluid ejection device includes a flow feature layer. The flow feature layer includes a plurality of flow features. The fluid ejection device further includes an ejection unit. The ejection unit includes a first layer. The first layer includes a plurality of fluid vias. Further, the ejection unit includes a second layer. The second layer includes a plurality of fluid channels. Further, the second layer is attached to the first layer through a first intermediate silicon oxide layer. The ejection unit also includes a third layer. The third layer includes a plurality of ports. The third layer is also attached to the second layer through a second intermediate silicon oxide layer. Further disclosed are an ejection unit for a fluid ejection device and a method for fabricating the fluid ejection device.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: February 25, 2014
    Assignee: Funai Electric Co., Ltd.
    Inventors: Frank Anderson, Jiandong Fang
  • Patent number: 8636340
    Abstract: Disclosed is a printhead for a printer that includes a plurality of ejection chip units. Each ejection chip unit of the plurality of ejection chip units is configured to eject at least one fluid. The printhead further includes a plurality of supporting units. Each supporting unit of the plurality of supporting units is fluidly coupled with a corresponding ejection chip unit. The each supporting unit includes a plurality of trenches adapted to receive an adhesive to facilitate attachment of the each supporting unit with the corresponding ejection chip unit. Furthermore, the printhead includes a base unit fluidly coupled with the each supporting unit of the plurality of supporting units. The base unit is adapted to provide the at least one fluid to the each ejection chip unit through a corresponding to supporting unit. Further disclosed is a method for assembling the printhead.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: January 28, 2014
    Assignee: Funai Electric Co., Ltd.
    Inventors: Michael J. Dixon, Jiandong Fang, Richard Earl Corley, Jr., Jeanne Marie Saldanha Singh, Frank E. Anderson, Xiaoming Wu
  • Patent number: 8622524
    Abstract: A micro-fluid ejection head has an ejection chip to expel fluid. It connects to a laminate construct. The construct has vertically configured wiring layers interspersed with non-wiring layers, such as carbon fiber layers. An upper of the wiring layers electrically connects to the ejection chip. The upper layer may also support a planar undersurface of the chip directly on a surface or in a recessed pocket. The two can connect with a die bond, such as one having silica or boron nitride. Fluid connections exist between ink feed slots of the chip and the laminate construct. A silicon tile or other material may also fluidly interconnect with the two. A plastic manifold optionally supports the laminate construct and may fluidly connect to it. The wiring layers of the laminate contemplate ground, power, and various bond pads. Other construct layers contemplate prepreg or core FR4 layers.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: January 7, 2014
    Assignee: Funai Electric Co., Ltd.
    Inventors: Frank Edward Anderson, Richard Corley, Michael John Dixon, Jiandong Fang, Jeanne Marie Saldanha Singh
  • Patent number: 8616680
    Abstract: A micro-fluid ejection head has multiple ejection chips joined adjacently to create a lengthy array across a media to-be-imaged. The chips have fluid firing elements arranged adjacently along corresponding ones of fluid vias skewed variously or not to enable seamless stitching of printed images from the adjacent firing elements. The firing elements are energized to eject fluid and individual ones are spaced according to colors or fluid types. Overlapping firing elements serve redundancy efforts during imaging for reliable print quality. Variable chips sizes and shapes, including chevrons, are disclosed as are relationships between differently colored fluid vias. Skew angles range variously each with noted advantages. Bond pads and overlying encapsulation materials are still other features as are metallization lines for distributing power to ones of firing elements. Singulating chips from larger wafers provide still further embodiments as does increased usage of the wafer.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: December 31, 2013
    Assignee: Funai Electric Co., Ltd.
    Inventors: Jiandong Fang, Paul William Graf
  • Publication number: 20130284694
    Abstract: Disclosed is an ejection device for an inkjet printer that includes an ejection chip having a substrate and at least one fluid ejecting element. The ejection device further includes a fluidic structure configured over the ejection chip. The fluidic structure includes a nozzle plate composed of an organic material and includes a plurality of nozzles. The fluidic structure further includes a flow feature layer configured in between the ejection chip and the nozzle plate. The flow feature layer is composed of an organic material and includes a plurality of flow features. Furthermore, the fluidic structure includes a liner layer encapsulating the nozzle plate. The liner layer further at least partially encapsulates each flow feature of the plurality of flow features. The liner layer is composed of an inorganic material. Further disclosed is a method for fabricating the ejection device.
    Type: Application
    Filed: June 24, 2013
    Publication date: October 31, 2013
    Inventors: Xiaorong CAI, Jiandong FANG, Xiaoming WU, Elaine Yeap MONEY, Eunki HONG, Yimin GUAN, Burton JOYNER, II, Sean Terrance WEAVER, David GRAHAM, Zach REITMEIER
  • Patent number: 8517513
    Abstract: Disclosed is an inkjet printhead that includes a plurality of fluid ejecting chips arranged in a plurality of rows. The plurality of fluid ejecting chips includes a first set of fluid ejecting chips arranged in a first row of the plurality of rows. The plurality of fluid ejecting chips includes a second set of fluid ejecting chips arranged in a second row parallel to the first row of the plurality of rows. Each fluid ejecting chip of the second set of fluid ejecting chips is configured between two consecutive fluid ejecting chips of the first set of fluid ejecting chips in a predetermined orientation. The inkjet printhead further includes a plurality of fluid vias and a plurality of bond pads. Further disclosed are fluid ejecting chips for being used in an inkjet printhead.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: August 27, 2013
    Assignee: Funai Electric Co., Ltd.
    Inventors: Jiandong Fang, Paul Graf
  • Patent number: 8500242
    Abstract: A micro-fluid ejection head for a printer is disclosed. The micro-fluid ejection head comprises a plurality of printhead modules. Each of the plurality of printhead modules comprises an ejection chip for ejecting fluid. The micro-fluid ejection head further comprises a support frame to mount the plurality of printhead modules for creating a lengthy array of the plurality of printhead modules. The support frame is electrically coupled with the plurality of printhead modules for allowing the plurality of printhead modules to receive data and electrical power.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: August 6, 2013
    Assignee: Funai Electric Co., Ltd.
    Inventors: Frank Anderson, Jiandong Fang, Jeanne Marie Saldanha Singh, Mike Dixon, Bryan McKinley, Samuel Sexton
  • Patent number: 8430482
    Abstract: A micro-fluid ejection head has multiple ejection chips joined adjacently to create a lengthy array across a media to-be-imaged. The chips have fluid firing elements arranged to seamlessly stitch together fluid ejections from adjacent chips. Each chip aligns with other chips at peripheral regions having edge tolerances closer than elsewhere along the periphery. The tolerances result from both etching and dicing during chip singulation. Etching occurs at the areas of alignment. Dicing occurs elsewhere. Etching techniques include deep reactive ion etching or wet etching. It cuts a planar periphery through an entire thickness of the wafer. The etching may also occur simultaneously with etching a fluid via. Dicing techniques include blade, laser or ion beam. It cuts an entire remainder of the periphery connecting the portions already etched to free single chips from the wafer. Edge tolerances, planar shapes, dicing lines, etch patterns, and wafer layout provide still further embodiments.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: April 30, 2013
    Assignee: Lexmark International, Inc.
    Inventors: Jiandong Fang, Carl Edmond Sullivan, Richard E. Corley
  • Patent number: 8430484
    Abstract: A micro-fluid ejection head conveys fluid to firing elements at differing heights in differing layers. The ejection head includes a base substrate. The firing elements are configured on the substrate to eject fluid upon activation. Individual elements are arrayed closer or farther to a common fluid via. A multiple-layer covering on the substrate defines nozzles openings corresponding to each firing element. A lower layer of the covering directs fluid to either the closer or farther elements while a higher layer directs fluid to the other elements. The lower and higher layers define channels to direct the fluid from the fluid via. The higher layer covers the channels in the lower layer, while a topmost layer covers the channels in the higher layer. Also, the topmost layer defines the nozzle openings in large and small opening sizes. Holes in the underlying layers register with the nozzle openings, but are oppositely sized.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: April 30, 2013
    Assignee: Lexmark International, Inc.
    Inventor: Jiandong Fang
  • Patent number: D1022320
    Type: Grant
    Filed: November 1, 2022
    Date of Patent: April 9, 2024
    Assignee: Edgewell Personal Care Brands, LLC
    Inventor: Jiandong Fang