Patents by Inventor Jiang-Jen Lin

Jiang-Jen Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8629200
    Abstract: The present invention provides an organic/inorganic compositive dispersant and a method for producing the same. The compositive dispersant comprises a complex of inorganic clay and an organic surfactant. The compositive dispersant is produced by reacting inorganic clay with the organic surfactant in a solvent to generate a complex. The inorganic clay is layered or platelet. The organic surfactant is an anionic surfactant such as alkyl sulfates, or a nonionic surfactant such as octylphenol polyethoxylate and polyoxyethylene alkyl ether. The compositive dispersant may be used to produce electrolytes of a solar cell or to increase the hardness of an epoxy resin.
    Type: Grant
    Filed: December 23, 2012
    Date of Patent: January 14, 2014
    Assignee: National Taiwan University
    Inventors: Jiang-Jen Lin, Wei-Ting Chen, Yen-Chi Hsu, Chih-Wei Chiu
  • Publication number: 20130296270
    Abstract: The present invention provides a method for inhibiting microorganisms or plant pests using exfoliated clay/surfactant complex. The weight ratio of the exfoliated clay to the surfactant can range from 99/1 to 1/99. Preferably, the exfoliated clay is an inorganic layered clay on a nano scale and the surfactant is cationic, nonionic, anionic or amphoteric.
    Type: Application
    Filed: July 2, 2013
    Publication date: November 7, 2013
    Inventors: Jiang-Jen Lin, Ying-Chiao Wang, Pei-Ru Li
  • Patent number: 8491699
    Abstract: The present invention provides a method for producing silver nanoparticles by employing ethanolamine. The method of this invention can be easily operated and no organic solvent is required. Ethanolamine first reacts with a mixture of poly(oxyalkylene)-amine/epoxy or copolymers of poly(styrene-co-maleic anhydride) (abbreviated as SMA) to generate polymeric polymers. The polymeric polymers then reduce silver ions to silver atoms which are dispersed in the form of silver nanoparticles. Functional groups of the polymeric polymers can chelate with silver ions and be stably compatible with water or organic solvents, whereby the silver nanoparticles can be stably dispersed without aggregation and the produced silver nanoparticles.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: July 23, 2013
    Assignee: National Taiwan University
    Inventors: Jiang-Jen Lin, Wei-Cheng Tsai, Chao-Po Hsu, Wei-Li Lin, Yueh-Hsien Wu
  • Patent number: 8487043
    Abstract: A phosphorous flame retardant primarily includes hexachlorotriphosphazene (HCP) having poly(oxyalkylene)amine substitutes. The poly(oxyalkylene)amine includes at least two end groups. The phosphorous flame retardant can further include layered silicate clay. The layered silicate clay can be intercalated and modified with the poly(oxyalkylene)amine substitutes of HCP to effectively promote thermal stability. The flame retardant, phosphazene-poly(oxyalkylene)amine adducts, can be applied to a polymer. By the cross-linking between them, the flame-retarding property of the polymer can be improved. Also provided is a method for producing the flame retardant of phosphazene-poly(oxyalkylene)amine adducts and application thereof to a polymer.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: July 16, 2013
    Assignee: National Taiwan University
    Inventors: Jiang-Jen Lin, Yu-Min Chen, Yi-Lin Liao
  • Publication number: 20130172447
    Abstract: A phosphorous flame retardant including nanosilicate platelets (NSP) is made by first reacting hexachlorotriphosphazene (HCP) with poly(oxyalkylene)amine, then mixing the HCP product with nano silicate platelets (NSP) to obtain the phosphorous flame retardant including NSP. The phosphorous flame retardant can be further applied to an epoxy resin as a curing agent.
    Type: Application
    Filed: July 29, 2012
    Publication date: July 4, 2013
    Applicant: NATIONAL TAIWAN UNIVERSITY
    Inventors: Jiang-Jen Lin, Ying-Nan Chan, Jau-Yu Chiou
  • Publication number: 20130165562
    Abstract: A phosphorous flame retardant containing clay is made in two steps. First, chlorines of hexachlorocyclotriphosphazene (HCP) are substituted with poly(oxyalkylene)-amines in the replacement reaction. Layered or exfoliated clay are then added to perform the intercalation, exfoliation or adsorption reaction to produce the phosphorous flame retardant. The phosphorous flame retardant can be further mixed with a polymer to promote the flame-retarding effect of the polymer.
    Type: Application
    Filed: July 29, 2012
    Publication date: June 27, 2013
    Applicant: NATIONAL TAIWAN UNIVERSITY
    Inventors: Jiang-Jen Lin, Ting-Kai Huang
  • Patent number: 8455594
    Abstract: A phosphorous flame retardant primarily includes hexachlorotriphosphazene (HCP) having poly(oxyalkylene)amine substitutes. The poly(oxyalkylene)amine includes at least two end groups. The phosphorous flame retardant can further include layered silicate clay. The layered silicate clay can be intercalated and modified with the poly(oxyalkylene)amine substitutes of HCP to effectively promote thermal stability. The flame retardant, phosphazene-poly(oxyalkylene)amine adducts, can be applied to a polymer. By the cross-linking between them, the flame-retarding property of the polymer can be improved. Also provided is a method for producing the flame retardant of phosphazene-poly(oxyalkylene)amine adducts and application thereof to a polymer.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: June 4, 2013
    Assignee: National Taiwan University
    Inventors: Jiang-Jen Lin, Yu-Min Chen, Yi-Lin Liao
  • Publication number: 20130062577
    Abstract: A carbon nanotube suspension includes a plurality of carbon nanotubes and a block copolymer dispersant which are evenly distributed in a solvent, wherein the block copolymer includes a hydrophobic block and a functional group block, such that the carbon nanotubes react with the functional group block to form covalent bonds directly without undergoing chemical modification. The carbon nanotube suspension is effective in preparing a superhydrophobic film without undergoing chemical modification or the presence of a fluorine-containing compound. The superhydrophobic film thus prepared is of a tough stable structure and remains superhydrophobic when subjected to lengthy immersion treatment, exposure to a strong acid-base environment, or physical abrasion and polishing.
    Type: Application
    Filed: December 5, 2011
    Publication date: March 14, 2013
    Inventors: JIANG-JEN LIN, CHAO-PO HSU
  • Publication number: 20130056688
    Abstract: A method for preparing a nanometal-polymer composite conductive film includes the steps of (1) mixing a metal oxide with a polymer solution; (2) coating a substrate with a solution resulting from step (1), followed by drying the resultant solution to form a film; (3) performing thermal treatment on the film formed in step (2); and (4) sintering the film thermally treated in step (3). The method dispenses with any reducing agent or dispersing agent but allows nanometallic particles to be formed in situ and thereby reduces surface resistance of the polymer film efficiently.
    Type: Application
    Filed: October 24, 2011
    Publication date: March 7, 2013
    Applicant: NATIONAL TAIWAN UNIVERSITY
    Inventors: JIANG-JEN LIN, YING-NAN CHAN, WEI-LI LIN
  • Publication number: 20130035445
    Abstract: A polymeric polymer is prepared from poly(oxyethylene)-amine and a linker, for example, poly(styrene-co-maleic anhydride) (SMA) or dianhydride. The polymeric polymer can chelate silver ions and reduce them to silver atoms which are dispersed as nanoparticles. No additional reducing agent is needed and more than 30% of solid content of the nanoparticles solution can be achieved without aggregation. The prepared silver nanoparticles are both hydrophilic and hydrophobic and therefore are compatible with polymers.
    Type: Application
    Filed: September 15, 2012
    Publication date: February 7, 2013
    Applicant: NATIONAL TAIWAN UNIVERSITY
    Inventors: Jiang-Jen Lin, Wei-Cheng Tsai, Rui-Xuan Dong, Wei-Li Lin, Chao-Po Hsu
  • Patent number: 8362092
    Abstract: The present invention provides an organic/inorganic compositive dispersant and a method for producing the same. The compositive dispersant comprises a complex of inorganic clay and an organic surfactant. The compositive dispersant is produced by reacting inorganic clay with the organic surfactant in a solvent to generate a complex. The inorganic clay is layered or platelet. The organic surfactant is an anionic surfactant such as alkyl sulfates, a nonionic surfactant such as octylphenol polyethoxylate and polyoxyethylene alkyl ether, or a cationic surfactant such as fatty (C12˜C32) quaternary ammonium salts and fatty (C12˜C32) quaternary ammonium chlorides.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: January 29, 2013
    Assignee: National Taiwan University
    Inventors: Jiang-Jen Lin, Wei-Ting Chen, Yen-Chi Hsu, Chih-Wei Chiu
  • Publication number: 20130005920
    Abstract: A CNT-PI complex primarily includes polyimide (PI) and carbon nanotubes (CNT) dispersed in the polyimide. The method for producing the CNT-PI complex first disperses carbon nanotubes in a solvent by adding a dispersant and using an ultrasonic oscillator. Then the carbon nanotubes dispersion is mixed with polyamic acid to give a CNT-PI dispersion. The CNT-PI dispersion is then dried to form a film or layer of the CNT-PI complex. The dispersant used in this invention is an ionic liquid including organic cations and inorganic anions. The produced CNT-PI complex possesses good electromagnetic shielding effectiveness and presents better networked structures and electrical conductivity.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 3, 2013
    Applicant: NATIONAL TAIWAN UNIVERSITY
    Inventors: Jiang-Jen Lin, Wood-Hi Cheng, Yi-Fen Lan, Jin-Chen Chiu, Jhe-Wei Lin, Chia-Ming Chang
  • Publication number: 20130005918
    Abstract: Polymeric polyamine is produced by polymerizing polyoxyalkylene-amine and a linker. The polyoxyalkylene-amine has a structural formula H2N—R—NH2, wherein R is selected from the group consisting of dianhydride, diacid, epoxy, diisocyanate and poly(styrene-co-maleic anhydride) copolymers (SMA). The linker can be anhydride, carboxylic acid, epoxy, isocyanate or poly(styrene-co-maleic anhydride) copolymers (SMA). The polymeric polyamine so produced can be used as a stabilizer or dispersant of the Ag nanoparticles.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 3, 2013
    Applicant: NATIONAL TAIWAN UNIVERSITY
    Inventors: Jiang-Jen Lin, Wei-Cheng Tsai, Yen-Chi Hsu, Wen-Hsin Chang
  • Patent number: 8333822
    Abstract: A polymeric polymer containing poly(oxyethylene)-amine and its application to preparation of silver nanoparticles. The polymeric polymer is prepared from poly(oxyethylene)-amine and a linker, for example, poly(styrene-co-maleic anhydride) (SMA) or dianhydride. The polymeric polymer can chelate silver ions and reduce them to silver atoms which are dispersed as nanoparticles. No additional reducing agent is needed and more than 30% of solid content of the nanoparticles solution can be achieved without aggregation. The prepared silver nanoparticles are both hydrophilic and hydrophobic and therefore are compatible with polymers.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: December 18, 2012
    Assignee: National Taiwan University
    Inventors: Jiang-Jen Lin, Wei-Cheng Tsai, Rui-Xuan Dong, Wei-Li Lin, Chao-Po Hsu
  • Publication number: 20120302669
    Abstract: A phosphorous flame retardant primarily includes hexachlorotriphosphazene (HCP) having poly(oxyalkylene)amine substitutes. The poly(oxyalkylene)amine includes at least two end groups. The phosphorous flame retardant can further include layered silicate clay. The layered silicate clay can be intercalated and modified with the poly(oxyalkylene)amine substitutes of HCP to effectively promote thermal stability. The flame retardant, phosphazene-poly(oxyalkylene)amine adducts, can be applied to a polymer. By the cross-linking between them, the flame-retarding property of the polymer can be improved. Also provided is a method for producing the flame retardant of phosphazene-poly(oxyalkylene)amine adducts and application thereof to a polymer.
    Type: Application
    Filed: August 6, 2012
    Publication date: November 29, 2012
    Applicant: NATIONAL TAIWAN UNIVERSITY
    Inventors: Jiang-Jen Lin, Yu-Min Chen, Yi-Lin Liao
  • Patent number: 8318844
    Abstract: The present invention provides an oil-dispersible composite of metallic nanoparticles and a method for synthesizing the same. The composite primarily includes metallic nanoparticles and an oily polymeric polymer such as polyurethane (PU). The oily polymeric polymer serves as a carrier of the metallic nanoparticles by chelating therewith so that the metallic nanoparticles are dispersed uniformly. In the method of the present invention, the metallic ions are first chelated by the oily polymeric polymer and then reduced into nanoparticles. The composite of the present invention is about 5 to 100 nm in particle size.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: November 27, 2012
    Assignee: National Taiwan University
    Inventors: Jiang-Jen Lin, Wei-Cheng Tsai, Rui-Xuan Dong, Hui-Fen Lin, Yueh-Hsien Wu
  • Publication number: 20120288553
    Abstract: The present invention provides a method for controlling toxicity of metallic particles and a low-toxicity composite of metallic nanoparticles and inorganic clay. The metallic nanoparticles are effective in preventing infection and in skinning over, and thus suitable for treating scalds/burns. In the composite, the weight ratio of metallic nanoparticles to inorganic clay preferably ranges 0.1/99.9 to 6.0/94.0 in a size of about 5 to 100 nm. Preferably, the metal is silver and the inorganic clay is nano silicate platelets.
    Type: Application
    Filed: July 14, 2012
    Publication date: November 15, 2012
    Applicant: NATIONAL TAIWAN UNIVERSITY
    Inventors: Jiang-Jen Lin, Hong-Lin Su, Fu-Chuo Peng, Chia-Yu Chu, Ying-Fang Chiu, Pei-Ru Li, Hsi-Tai Sun
  • Publication number: 20120279352
    Abstract: The present invention provides a method for producing silver nanoparticles by employing ethanolamine. The method of this invention can be easily operated and no organic solvent is required. Ethanolamine first reacts with copolymers of poly(styrene-co-maleic anhydride) (abbreviated as SMA) to generate polymeric polymers. The polymeric polymers then reduce silver ions to silver atoms which are dispersed in the form of silver nanoparticles. Functional groups of the polymeric polymers can chelate with silver ions and be stably compatible with water or organic solvents, whereby the silver nanoparticles can be stably dispersed without aggregation and the produced silver nanoparticles.
    Type: Application
    Filed: July 14, 2012
    Publication date: November 8, 2012
    Applicant: NATIONAL TAIWAN UNIVERSITY
    Inventors: Jiang-Jen Lin, Wei-Cheng Tsai, Chao-Po Hsu, Wei-Li Lin, Yueh-Hsien Wu
  • Patent number: 8252342
    Abstract: A method for producing a complex of metallic nanoparticles and inorganic clay and an organic promoter, wherein the organic promoter is ethanolamine, for example, monoethanolamine (MEA), diethanolamine (DEA) or triethanolamine (TEA). The metallic nanoparticles produced by this method can be stably and uniformly dispersed without adding other reducing agent or dispersant.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: August 28, 2012
    Assignee: National Taiwan University
    Inventors: Jiang-Jen Lin, Yueh-Hsien Wu
  • Publication number: 20120171449
    Abstract: To produce an anti-flame film, nanoscale silicate platelets (NSP) are first diluted with water or an organic solvent; the dispersion is then dried on a surface to remove the water or organic solvent and finally an almost inorganic and flexible film with a thickness of 1 to 1,000 ?m is obtained. The film has a regularly layered alignment of primary platelet (1 nm thickness) structure. The NSP film has excellent anti-flame and heat insulation properties that can effectively shield a flame of more than 800° C. without apparent deformation in shape. The NSP can be blended with polymers with a composition over 30% or preferably 70% of NSP to make composite films with significant improvement in flame and heat shielding.
    Type: Application
    Filed: December 5, 2011
    Publication date: July 5, 2012
    Applicant: NATIONAL CHUNG-HSING UNIVERSITY
    Inventors: Jiang-Jen LIN, Ya-Chi WANG, Yi-Lin LIAO, Chih-Wei CHIU