Patents by Inventor Jiangbo Gan

Jiangbo Gan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230288429
    Abstract: Methods for identifying compounds that modulate cellular responses stimulated by IgE, which include providing an impedance-based system that monitors cell-substrate impedance of cells on a substrate; introducing cells to the substrate of the system; adding at least one test compound and IgE to the cells, wherein the at least one test compound is suspected of modulating cell responses stimulated by the IgE; adding an antigen to the cells; monitoring the cell-substrate impedance of cells on the substrate; and analyzing the cell-substrate impedance to evaluate whether the at least one test compound alters a cellular response to stimulation with the IgE.
    Type: Application
    Filed: March 8, 2023
    Publication date: September 14, 2023
    Inventors: Xiao Xu, Yama A. Abassi, Xiaobo Wang, Jiangbo Gan
  • Publication number: 20230145666
    Abstract: Methods for identifying compounds that modulate cellular responses stimulated by IgE, which include providing an impedance-based system that monitors cell-substrate impedance of cells on a substrate; introducing cells to the substrate of the system; adding at least one test compound and IgE to the cells, wherein the at least one test compound is suspected of modulating cell responses stimulated by the IgE; adding an antigen to the cells; monitoring the cell-substrate impedance of cells on the substrate; and analyzing the cell-substrate impedance to evaluate whether the at least one test compound alters a cellular response to stimulation with the IgE.
    Type: Application
    Filed: January 10, 2023
    Publication date: May 11, 2023
    Inventors: Xiao Xu, Yama A. Abassi, Xiaobo Wang, Jiangbo Gan
  • Patent number: 11604197
    Abstract: Methods for identifying compounds that modulate cellular responses stimulated by IgE, which include providing an impedance-based system that monitors cell-substrate impedance of cells on a substrate; introducing cells to the substrate of the system; adding at least one test compound and IgE to the cells, wherein the at least one test compound is suspected of modulating cell responses stimulated by the IgE; adding an antigen to the cells; monitoring the cell-substrate impedance of cells on the substrate; and analyzing the cell-substrate impedance to evaluate whether the at least one test compound alters a cellular response to stimulation with the IgE.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: March 14, 2023
    Assignee: Agilent Technologies, Inc.
    Inventors: Xiao Xu, Yama A. Abassi, Xiaobo Wang, Jiangbo Gan
  • Publication number: 20200348312
    Abstract: Methods for identifying compounds that modulate cellular responses stimulated by IgE, which include providing an impedance-based system that monitors cell-substrate impedance of cells on a substrate; introducing cells to the substrate of the system; adding at least one test compound and IgE to the cells, wherein the at least one test compound is suspected of modulating cell responses stimulated by the IgE; adding an antigen to the cells; monitoring the cell-substrate impedance of cells on the substrate; and analyzing the cell-substrate impedance to evaluate whether the at least one test compound alters a cellular response to stimulation with the IgE.
    Type: Application
    Filed: March 27, 2020
    Publication date: November 5, 2020
    Inventors: Xiao Xu, Yama A. Abassi, Xiaobo Wang, Jiangbo Gan
  • Patent number: 10690677
    Abstract: Methods for identifying compounds that modulate cellular responses stimulated by IgE, which include providing an impedance-based system that monitors cell-substrate impedance of cells on a substrate; introducing cells to the substrate of the system; adding at least one test compound and IgE to the cells, wherein the at least one test compound is suspected of modulating cell responses stimulated by the IgE; adding an antigen to the cells; monitoring the cell-substrate impedance of cells on the substrate; and analyzing the cell-substrate impedance to evaluate whether the at least one test compound alters a cellular response to stimulation with the IgE.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: June 23, 2020
    Assignee: ACEA Biosciences, Inc.
    Inventors: Xiao Xu, Yama A. Abassi, Xiaobo Wang, Jiangbo Gan
  • Publication number: 20170315131
    Abstract: Methods for identifying compounds that modulate cellular responses stimulated by IgE, which include providing an impedance-based system that monitors cell-substrate impedance of cells on a substrate; introducing cells to the substrate of the system; adding at least one test compound and IgE to the cells, wherein the at least one test compound is suspected of modulating cell responses stimulated by the IgE; adding an antigen to the cells; monitoring the cell-substrate impedance of cells on the substrate; and analyzing the cell-substrate impedance to evaluate whether the at least one test compound alters a cellular response to stimulation with the IgE.
    Type: Application
    Filed: April 13, 2017
    Publication date: November 2, 2017
    Inventors: Xiao Xu, Yama A. Abassi, Xiaobo Wang, Jiangbo Gan
  • Patent number: 9625472
    Abstract: The present invention includes devices, systems, and methods for assaying cells using cell-substrate impedance monitoring. In one aspect, the invention provides cell-substrate impedance monitoring devices that comprise electrode arrays on a nonconducting substrate, in which each of the arrays has an approximately uniform electrode resistance across the entire array. In another aspect, the invention provides cellular assays that use impedance monitoring to detect changes in cell behavior or state. In some preferred aspects, the assays are designed to investigate the affects of compounds on cells, such as cytotoxicity assays.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: April 18, 2017
    Assignee: ACEA Biosciences, Inc.
    Inventors: Xiao Xu, Yama Abassi, Xiaobo Wang, Jiangbo Gan
  • Publication number: 20120142031
    Abstract: The present invention includes devices, systems, and methods for assaying cells using cell-substrate impedance monitoring. In one aspect, the invention provides cell-substrate impedance monitoring devices that comprise electrode arrays on a nonconducting substrate, in which each of the arrays has an approximately uniform electrode resistance across the entire array. In another aspect, the invention provides cellular assays that use impedance monitoring to detect changes in cell behavior or state. In some preferred aspects, the assays are designed to investigate the affects of compounds on cells, such as cytotoxicity assays.
    Type: Application
    Filed: September 23, 2011
    Publication date: June 7, 2012
    Inventors: Xiao Xu, Yama Abassi, Xiaobo Wang, Jiangbo Gan
  • Patent number: 8068797
    Abstract: A gain control process (1102) executed at a transmitter (500) generates (1314) a gain ramp signal (1206) having a delay component (1224) and a gain component (1226). The process (1102) further generates (1304) and incorporates (1306) a gain arc (1202) into a digital signal to form a digital gain signal (1204) having a digital gain change (1218). A combiner (502) combines a digital input signal (512) with the digital gain signal (1204) to generate a pre-compensated digital signal (516). A variable gain amplifier (508) applies a sequence of gains (1234,1236,1238,1240,1242) in the gain component (1126) of the gain ramp signal (1206) to a pre-adjusted analog signal (520) in order to generate a gain-adjusted analog signal (524). Application of the gain component (1126) and the digital gain change (1218) occurs when a portion (1212) of the gain arc (1202) indicates a low instantaneous signal power at an antenna (106) in order to reduce ACLR degradation.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: November 29, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Jiangbo Gan, Srinivasa R. Bommareddy, Pravin Premakanthan
  • Patent number: 8026080
    Abstract: The present invention includes devices, systems, and methods for assaying cells using cell-substrate impedance monitoring. In one aspect, the invention provides cell-substrate impedance monitoring devices that comprise electrode arrays on a nonconducting substrate, in which each of the arrays has an approximately uniform electrode resistance across the entire array. In another aspect, the invention provides cell-substrate monitoring systems comprising one or more cell-substrate monitoring devices comprising multiple wells each having an electrode array, an impedance analyzer, a device station that connects arrays of individual wells to the impedance analyzer, and software for controlling the device station and impedance analyzer. In another aspect, the invention provides cellular assays that use impedance monitoring to detect changes in cell behavior or state. In some preferred aspects, the assays are designed to investigate the affects of compounds on cells, such as cytotoxicity assays.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: September 27, 2011
    Assignee: Acea Biosciences, Inc.
    Inventors: Xiaobo Wang, Yama A. Abassi, Xiao Xu, Jiangbo Gan
  • Publication number: 20090088102
    Abstract: A gain control process (1102) executed at a transmitter (500) generates (1314) a gain ramp signal (1206) having a delay component (1224) and a gain component (1226). The process (1102) further generates (1304) and incorporates (1306) a gain arc (1202) into a digital signal to form a digital gain signal (1204) having a digital gain change (1218). A combiner (502) combines a digital input signal (512) with the digital gain signal (1204) to generate a pre-compensated digital signal (516). A variable gain amplifier (508) applies a sequence of gains (1234,1236,1238,1240,1242) in the gain component (1126) of the gain ramp signal (1206) to a pre-adjusted analog signal (520) in order to generate a gain-adjusted analog signal (524). Application of the gain component (1126) and the digital gain change (1218) occurs when a portion (1212) of the gain arc (1202) indicates a low instantaneous signal power at an antenna (106) in order to reduce ACLR degradation.
    Type: Application
    Filed: October 10, 2008
    Publication date: April 2, 2009
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Jiangbo Gan, Srinivasa R. Bommareddy, Pravin Premakanthan
  • Patent number: 7443323
    Abstract: Methods and corresponding systems for calibrating a digital-to-analog converter include selecting first and second code regions in the digital-to-analog converter, wherein the first and second code regions are separated by a boundary. Thereafter a waveform sequence is input into the digital-to-analog converter, wherein the waveform sequence has a zero offset at the boundary. Then a relative compensation value between the first and second code regions is adjusted to reduce a distortion in an output of the digital-to-analog converter. A magnitude of a third harmonic distortion of the waveform sequence can be used to measure distortion in the output. Adjusting the relative compensation can include converting the output of the digital-to-analog converter to a digital sequence, filtering the digital sequence, and measuring a harmonic distortion in the digital sequence.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: October 28, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Christian J. Rotchford, Brandt Braswell, Jiangbo Gan, Michael L. Gomez, Gerald P. Miaille, Boris V. Razmyslovitch
  • Publication number: 20080165040
    Abstract: Methods and corresponding systems for calibrating a digital-to-analog converter include selecting first and second code regions in the digital-to-analog converter, wherein the first and second code regions are separated by a boundary. Thereafter a waveform sequence is input into the digital-to-analog converter, wherein the waveform sequence has a zero offset at the boundary. Then a relative compensation value between the first and second code regions is adjusted to reduce a distortion in an output of the digital-to-analog converter. A magnitude of a third harmonic distortion of the waveform sequence can be used to measure distortion in the output. Adjusting the relative compensation can include converting the output of the digital-to-analog converter to a digital sequence, filtering the digital sequence, and measuring a harmonic distortion in the digital sequence.
    Type: Application
    Filed: January 10, 2007
    Publication date: July 10, 2008
    Inventors: Christian J. Rotchford, Brandt Braswell, Jiangbo Gan, Michael L. Gomez, Gerald P. Miaille, Boris V. Razmyslovitch
  • Publication number: 20070172939
    Abstract: The present invention includes devices, systems, and methods for assaying cells using cell-substrate impedance monitoring. In one aspect, the invention provides cell-substrate impedance monitoring devices that comprise electrode arrays on a nonconducting substrate, in which each of the arrays has an approximately uniform electrode resistance across the entire array. In another aspect, the invention provides cell-substrate monitoring systems comprising one or more cell-substrate monitoring devices comprising multiple wells each having an electrode array, an impedance analyzer, a device station that connects arrays of individual wells to the impedance analyzer, and software for controlling the device station and impedance analyzer. In another aspect, the invention provides cellular assays that use impedance monitoring to detect changes in cell behavior or state. In some preferred aspects, the assays are designed to investigate the affects of compounds on cells, such as cytotoxicity assays.
    Type: Application
    Filed: March 15, 2007
    Publication date: July 26, 2007
    Inventors: Xiao Xu, Yama Abassi, Xiaobo Wang, Jiangbo Gan
  • Patent number: 7192752
    Abstract: The present invention includes devices, systems, and methods for assaying cells using cell-substrate impedance monitoring. In one aspect, the invention provides cell-substrate impedance monitoring devices that comprise electrode arrays on a nonconducting substrate, in which each of the arrays has an approximately uniform electrode resistance across the entire array. In another aspect, the invention provides cell-substrate monitoring systems comprising one or more cell-substrate monitoring devices comprising multiple wells each having an electrode array, an impedance analyzer, a device station that connects arrays of individual wells to the impedance analyzer, and software for controlling the device station and impedance analyzer. In another aspect, the invention provides cellular assays that use impedance monitoring to detect changes in cell behavior or state. In some preferred aspects, the assays are designed to investigate the affects of compounds on cells, such as cytotoxicity assays.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: March 20, 2007
    Assignee: ACEA BioSciences
    Inventors: Xiao Xu, Yama Abassi, Xiaobo Wang, Jiangbo Gan
  • Publication number: 20050153425
    Abstract: The present invention includes devices, systems, and methods for assaying cells using cell-substrate impedance monitoring. In one aspect, the invention provides cell-substrate impedance monitoring devices that comprise electrode arrays on a nonconducting substrate, in which each of the arrays has an approximately uniform electrode resistance across the entire array. In another aspect, the invention provides cell-substrate monitoring systems comprising one or more cell-substrate monitoring devices comprising multiple wells each having an electrode array, an impedance analyzer, a device station that connects arrays of individual wells to the impedance analyzer, and software for controlling the device station and impedance analyzer. In another aspect, the invention provides cellular assays that use impedance monitoring to detect changes in cell behavior or state. In some preferred aspects, the assays are designed to investigate the affects of compounds on cells, such as cytotoxicity assays.
    Type: Application
    Filed: November 12, 2004
    Publication date: July 14, 2005
    Inventors: Xiao Xu, Yama Abassi, Xiaobo Wang, Jiangbo Gan