Patents by Inventor Jian-Hua Zou

Jian-Hua Zou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230094925
    Abstract: Disclosed in the present invention is a rare-earth doped semiconductor material. Compounds of two rare-earth elements R and R? having different functions are introduced into an indium oxide containing material. The coupling of R element ions to an O2p orbit can effectively enhance the transfer efficiency of the rare-earth R? as a photogenerated electron transfer center, such that the light stability of a device with a small amount of R? doping can be achieved. Compared with single rare-earth element R? doping, due to less doping, the impact on a mobility is less, such that higher mobility and light stability devices can be obtained. Further provided in the present invention is a semiconductor-based thin-film transistor, and an application.
    Type: Application
    Filed: November 25, 2022
    Publication date: March 30, 2023
    Inventors: Miao Xu, Hua Xu, Min Li, Junbiao Peng, Lei Wang, Jian Hua Zou, Hong Tao
  • Patent number: 11545581
    Abstract: The present invention discloses a metal oxide (MO) semiconductor, which is implemented by respectively doping at least an oxide of rare earth element R and an oxide of rare earth element R? into an indium-containing MO semiconductor to form an InxMyRnR?mOz semiconductor. According to the present invention, the extremely high oxygen bond breaking energy in the oxide of rare earth element R is used to effectively control the carrier concentration in the semiconductor, and a charge transportation center can be formed by using the characteristic that the radius of rare earth ions is equivalent to the radius of indium ions, so that the electrical stability of the semiconductor is improved. The present invention further provides a thin-film transistor based on the MO semiconductor and application thereof.
    Type: Grant
    Filed: January 26, 2021
    Date of Patent: January 3, 2023
    Assignee: SOUTH CHINA UNIVERSITY OF TECHNOLOGY
    Inventors: Miao Xu, Hua Xu, Min Li, Junbiao Peng, Lei Wang, Jian Hua Zou, Hong Tao
  • Patent number: 11545580
    Abstract: The present invention discloses a metal oxide (MO) semiconductor, which is obtained by doping a small amount of rare-earth oxide (RO) as a photo-induced carrier transportion center into an indium-containing MO semiconductor to form a (In2O3)x(MO)y(RO)z semiconductor material. According to the present invention, a charge transportion center can be formed by utilizing the characteristics that the radius of rare-earth ions is equal to that of indium ions, and 4f orbitals in the rare-earth ions and 5s orbitals of the indium ions, so as to improve the stability under illumination. The present invention further provides a thin-film transistor based on the MO semiconductor and application thereof.
    Type: Grant
    Filed: November 27, 2020
    Date of Patent: January 3, 2023
    Assignee: SOUTH CHINA UNIVERSITY OF TECHNOLOGY
    Inventors: Miao Xu, Hua Xu, Min Li, Junbiao Peng, Lei Wang, Jian Hua Zou, Hong Tao
  • Publication number: 20210151606
    Abstract: The present invention discloses a metal oxide (MO) semiconductor, which is implemented by respectively doping at least an oxide of rare earth element R and an oxide of rare earth element R? into an indium-containing MO semiconductor to form an InxMyRnR?mOz semiconductor. According to the present invention, the extremely high oxygen bond breaking energy in the oxide of rare earth element R is used to effectively control the carrier concentration in the semiconductor, and a charge transportation center can be formed by using the characteristic that the radius of rare earth ions is equivalent to the radius of indium ions, so that the electrical stability of the semiconductor is improved. The present invention further provides a thin-film transistor based on the MO semiconductor and application thereof.
    Type: Application
    Filed: January 26, 2021
    Publication date: May 20, 2021
    Inventors: MIAO XU, HUA XU, MIN LI, JUNBIAO PENG, LEI WANG, JIAN HUA ZOU, HONG TAO
  • Publication number: 20210083126
    Abstract: The present invention discloses a metal oxide (MO) semiconductor, which is obtained by doping a small amount of rare-earth oxide (RO) as a photo-induced carrier transportion center into an indium-containing MO semiconductor to form a (In2O3)x(MO)y(RO)z semiconductor material. According to the present invention, a charge transportion center can be formed by utilizing the characteristics that the radius of rare-earth ions is equal to that of indium ions, and 4f orbitals in the rare-earth ions and 5s orbitals of the indium ions, so as to improve the stability under illumination. The present invention further provides a thin-film transistor based on the MO semiconductor and application thereof.
    Type: Application
    Filed: November 27, 2020
    Publication date: March 18, 2021
    Inventors: MIAO XU, HUA XU, MIN LI, JUNBIAO PENG, LEI WANG, JIAN HUA ZOU, HONG TAO
  • Patent number: 7939577
    Abstract: The invention provides a radiation-curable alkoxy silanized hyperbranched polyester acrylate, characterized in that the radiation-curable alkoxy silanized hyperbranched polyester acrylate is produced by using a hyperbranched molecule with at least 16 functionalities as a core; acrylating or methacrylating a portion of the terminal groups of the hyperbranched molecule; and terminating a portion of the end groups of the hyperbranched molecule with an isocyanated silane coupling agent. The acrylate of the invention can be formed into a coating on polar substrates, such as glass or metal, or used as an adhesive.
    Type: Grant
    Filed: September 18, 2006
    Date of Patent: May 10, 2011
    Assignee: Eternal Chemical Co., Ltd.
    Inventors: Shun-Liang Chen, Bud Huang, Wen-Fang Shih, Gang Xu, Jian-Hua Zou
  • Publication number: 20070066766
    Abstract: The invention provides a radiation-curable alkoxy silanized hyperbranched polyester acrylate, characterized in that the radiation-curable alkoxy silanized hyperbranched polyester acrylate is produced by using a hyperbranched molecule with at least 16 functionalities as a core; acrylating or methacrylating a portion of the terminal groups of the hyperbranched molecule; and terminating a portion of the end groups of the hyperbranched molecule with an isocyanated silane coupling agent. The acrylate of the invention can be formed into a coating on polar substrates, such as glass or metal, or used as an adhesive.
    Type: Application
    Filed: September 18, 2006
    Publication date: March 22, 2007
    Inventors: Shun-Liang Chen, Bud Huang, Wen-Fang Shih, Gang Xu, Jian-Hua Zou