Patents by Inventor Jianing Xu

Jianing Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12148449
    Abstract: The present disclosure relates to a layout adjustment method and apparatus, a device, a storage medium, and a program product. The method includes: displaying a multimedia editing interface, where the multimedia editing interface includes a canvas, a material attribute panel, a material display area and a track editing area, and the canvas is configured to display a multimedia image corresponding to multimedia data; and adjusting, in response to receiving an adjustment operation on the canvas, size information and/or position information of the canvas based on the adjustment operation. In the multimedia editing interface of embodiments of the present disclosure, a user can adaptively adjust the size and position of the canvas, and display other areas in a transparent manner, such that the user can view the multimedia image displayed on the entire canvas at any time.
    Type: Grant
    Filed: December 19, 2023
    Date of Patent: November 19, 2024
    Assignee: Beijing Zitiao Network Technology Co., Ltd.
    Inventors: Yu Zhang, Zhijun Cai, Yifei Chen, Yijing Lin, Jianing Xu, Zheng Zhen
  • Patent number: 11856682
    Abstract: The present invention relates to a method for measuring the ion nonextensive parameter of plasma includes the following steps: describe the plasma with nonextensive statistical mechanics, obtain the equation describing the relationship between the geodesic acoustic mode frequency and the ion acoustic speed of plasma; collect the measurement data of the geodesic acoustic mode frequencies and plasma temperature in the device where the plasma is to be measured; the obtained equation describing the relationship between the geodesic acoustic mode frequency and the ion acoustic speed of plasma is used to linearly fit the collected measured data of the geodesic acoustic mode frequency and the plasma temperature in the device where the plasma is to be measured to obtain the slope value; based on the derived equation and the obtained slope values, and combining with the safety factor of the device where the plasma is to be measured, the ion nonextensive parameter is solved numerically.
    Type: Grant
    Filed: February 8, 2023
    Date of Patent: December 26, 2023
    Assignee: NANCHANG UNIVERSITY
    Inventors: Huibin Qiu, Zuozhi Hu, Donghua Xiao, Shengfa Wu, Chengjie Zhong, Jiangcun Chen, Chaozhe Hu, Xiaobin Li, Junjie Wu, Junhui Liu, Yizhen Bao, Xiaoyang Zhang, Runrui Dai, Lihuan Liu, Jianing Xu, Xu Tu, Juecong Zhang, Peng Guo, Shuyu Long, Huang Weng, Chenyu Tong, Sanqiu Liu
  • Publication number: 20230189423
    Abstract: The present invention relates to a method for measuring the ion nonextensive parameter of plasma includes the following steps: describe the plasma with nonextensive statistical mechanics, obtain the equation describing the relationship between the geodesic acoustic mode frequency and the ion acoustic speed of plasma; collect the measurement data of the geodesic acoustic mode frequencies and plasma temperature in the device where the plasma is to be measured; the obtained equation describing the relationship between the geodesic acoustic mode frequency and the ion acoustic speed of plasma is used to linearly fit the collected measured data of the geodesic acoustic mode frequency and the plasma temperature in the device where the plasma is to be measured to obtain the slope value; based on the derived equation and the obtained slope values, and combining with the safety factor of the device where the plasma is to be measured, the ion nonextensive parameter is solved numerically.
    Type: Application
    Filed: February 8, 2023
    Publication date: June 15, 2023
    Inventors: Huibin Qiu, Zuozhi Hu, Donghua Xiao, Shengfa Wu, Chengjie Zhong, Jiangcun Chen, Chaozhe Hu, Xiaobin Li, Junjie Wu, Junhui Liu, Yizhen Bao, Xiaoyang Zhang, Runrui Dai, Lihuan Liu, Jianing Xu, Xu Tu, Juecong Zhang, Peng Guo, Shuyu Long, Huang Weng, Chenyu Tong, Sanqiu Liu
  • Patent number: 10610521
    Abstract: The present invention relates to the use of one or more biomarkers to evaluate the likelihood that a rapamycin analog would produce an anti-cancer effect in a subject. It is based, at least in part, on the results of experiments employing an integrated next-generation sequencing approach to interrogate spatially separated tumor specimens from the same individuals to decipher intra-tumor and intertumor heterogeneity and determine the oncogenomic basis of exceptional therapeutic benefit to rapalogs in kidney cancer patients. These experiments implicated loss of function mutations in TSC1 and/or TSC2 and/or gain-of-function of mTOR in therapeutic responsiveness to rapamycin analogs.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: April 7, 2020
    Assignee: MEMORIAL SLOAN KETTERING CANCER CENTER
    Inventors: James J. Hsieh, Michael Berger, Robert Motzer, Martin H. Voss, A Ari Hakimi, Can Pham, Emily Cheng, Angela Rose Brannon, Jianing Xu
  • Publication number: 20160067229
    Abstract: The present invention relates to the use of one or more biomarkers to evaluate the likelihood that a rapamycin analog would produce an anti-cancer effect in a subject. It is based, at least in part, on the results of experiments employing an integrated next-generation sequencing approach to interrogate spatially separated tumor specimens from the same individuals to decipher intra-tumor and intertumor heterogeneity and determine the oncogenomic basis of exceptional therapeutic benefit to rapalogs in kidney cancer patients. These experiments implicated loss of function mutations in TSC1 and/or TSC2 and/or gain-of-function of mTOR in therapeutic responsiveness to rapamycin analogs.
    Type: Application
    Filed: September 14, 2015
    Publication date: March 10, 2016
    Inventors: James J. Hsieh, Michael Berger, Robert Motzer, Martin H. Voss, Ari A. Hakimi, Can Pham, Emily Cheng, Rose Brannon, Jianing Xu