Patents by Inventor Jianming Zhang

Jianming Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240169500
    Abstract: Systems and methods for image processing are described. Embodiments of the present disclosure receive an image comprising a first region that includes content and a second region to be inpainted. Noise is then added to the image to obtain a noisy image, and a plurality of intermediate output images are generated based on the noisy image using a diffusion model trained using a perceptual loss. The intermediate output images predict a final output image based on a corresponding intermediate noise level of the diffusion model. The diffusion model then generates the final output image based on the intermediate output image. The final output image includes inpainted content in the second region that is consistent with the content in the first region.
    Type: Application
    Filed: November 22, 2022
    Publication date: May 23, 2024
    Inventors: Haitian Zheng, Zhe Lin, Jianming Zhang, Connelly Stuart Barnes, Elya Shechtman, Jingwan Lu, Qing Liu, Sohrab Amirghodsi, Yuqian Zhou, Scott Cohen
  • Publication number: 20240169628
    Abstract: The present disclosure relates to systems, methods, and non-transitory computer-readable media that provides a graphical user interface experience to move objects and generate new shadows within a digital image scene. For instance, in one or more embodiments, the disclosed systems receive a digital image depicting a scene. The disclosed systems receive a selection to position an object in a first location within the scene. Further, the disclosed systems composite an image by placing the object at the first location within the scene of the digital image. Moreover, the disclosed systems generate a modified digital image having a shadow of the object where the shadow is consistent with the scene and provides the modified digital image to the client device.
    Type: Application
    Filed: September 1, 2023
    Publication date: May 23, 2024
    Inventors: Soo Ye Kim, Zhe Lin, Scott Cohen, Jianming Zhang, Luis Figueroa, Zhihong Ding
  • Publication number: 20240169624
    Abstract: The present disclosure relates to systems, methods, and non-transitory computer-readable media that modify digital images via scene-based editing using image understanding facilitated by artificial intelligence. For instance, in one or more embodiments, the disclosed systems generate utilizing a segmentation neural network, an object mask for each object of a plurality of objects of a digital image. The disclosed systems detect a first user interaction with an object in the digital image displayed via a graphical user interface. The disclosed systems surface, via the graphical user interface, the object mask for the object in response to the first user interaction. The disclosed systems perform an object-aware modification of the digital image in response to a second user interaction with the object mask for the object.
    Type: Application
    Filed: November 23, 2022
    Publication date: May 23, 2024
    Inventors: Jonathan Brandt, Scott Cohen, Zhe Lin, Zhihong Ding, Darshan Prasad, Matthew Joss, Celso Gomes, Jianming Zhang, Olena Soroka, Klaas Stoeckmann, Michael Zimmermann, Thomas Muehrke
  • Publication number: 20240158403
    Abstract: The present disclosure provides novel heteroaryl compounds of formula (IX). Such compounds are useful for the treatment of cancers.
    Type: Application
    Filed: January 24, 2024
    Publication date: May 16, 2024
    Applicants: Dana-Farber Cancer Institute, Inc., The Scripps Research Institute
    Inventors: Nathanael S. GRAY, Jianming ZHANG, Barun OKRAM, Xianming DENG, Jae Won CHANG, Amy WOJCIECHOWSKI
  • Patent number: 11983632
    Abstract: The disclosure describes one or more implementations of a neural network architecture pruning system that automatically and progressively prunes neural networks. For instance, the neural network architecture pruning system can automatically reduce the size of an untrained or previously-trained neural network without reducing the accuracy of the neural network. For example, the neural network architecture pruning system jointly trains portions of a neural network while progressively pruning redundant subsets of the neural network at each training iteration. In many instances, the neural network architecture pruning system increases the accuracy of the neural network by progressively removing excess or redundant portions (e.g., channels or layers) of the neural network. Further, by removing portions of a neural network, the neural network architecture pruning system can increase the efficiency of the neural network.
    Type: Grant
    Filed: April 28, 2023
    Date of Patent: May 14, 2024
    Assignee: Adobe Inc.
    Inventors: Shikun Liu, Zhe Lin, Yilin Wang, Jianming Zhang, Federico Perazzi
  • Publication number: 20240135511
    Abstract: The present disclosure relates to systems, methods, and non-transitory computer-readable media that modify digital images via scene-based editing using image understanding facilitated by artificial intelligence. For example, in one or more embodiments the disclosed systems utilize generative machine learning models to create modified digital images portraying human subjects. In particular, the disclosed systems generate modified digital images by performing infill modifications to complete a digital image or human inpainting for portions of a digital image that portrays a human. Moreover, in some embodiments, the disclosed systems perform reposing of subjects portrayed within a digital image to generate modified digital images. In addition, the disclosed systems in some embodiments perform facial expression transfer and facial expression animations to generate modified digital images or animations.
    Type: Application
    Filed: March 27, 2023
    Publication date: April 25, 2024
    Inventors: Krishna Kumar Singh, Yijun Li, Jingwan Lu, Duygu Ceylan Aksit, Yangtuanfeng Wang, Jimei Yang, Tobias Hinz, Qing Liu, Jianming Zhang, Zhe Lin
  • Publication number: 20240135613
    Abstract: The present disclosure relates to systems, methods, and non-transitory computer-readable media that implement perspective-aware object move operations for digital image editing. For instance, in some embodiments, the disclosed systems determine a vanishing point associated with a digital image portraying an object. Additionally, the disclosed systems detect one or more user interactions for moving the object within the digital image. Based on moving the object with respect to the vanishing point, the disclosed systems perform a perspective-based resizing of the object within the digital image.
    Type: Application
    Filed: May 19, 2023
    Publication date: April 25, 2024
    Inventors: Zhihong Ding, Scott Cohen, Matthew Joss, Jianming Zhang, Darshan Prasad, Celso Gomes, Jonathan Brandt
  • Publication number: 20240135510
    Abstract: The present disclosure relates to systems, methods, and non-transitory computer-readable media that modify digital images via scene-based editing using image understanding facilitated by artificial intelligence. For example, in one or more embodiments the disclosed systems utilize generative machine learning models to create modified digital images portraying human subjects. In particular, the disclosed systems generate modified digital images by performing infill modifications to complete a digital image or human inpainting for portions of a digital image that portrays a human. Moreover, in some embodiments, the disclosed systems perform reposing of subjects portrayed within a digital image to generate modified digital images. In addition, the disclosed systems in some embodiments perform facial expression transfer and facial expression animations to generate modified digital images or animations.
    Type: Application
    Filed: March 27, 2023
    Publication date: April 25, 2024
    Inventors: Qing Liu, Jianming Zhang, Krishna Kumar Singh, Scott Cohen, Zhe Lin
  • Publication number: 20240135561
    Abstract: The present disclosure relates to systems, methods, and non-transitory computer-readable media that implement depth-aware object move operations for digital image editing. For instance, in some embodiments, the disclosed systems determine a first object depth for a first object portrayed within a digital image and a second object depth for a second object portrayed within the digital image. Additionally, the disclosed systems move the first object to create an overlap area between the first object and the second object within the digital image. Based on the first object depth and the second object depth, the disclosed systems modify the digital image to occlude the first object or the second object within the overlap area.
    Type: Application
    Filed: May 19, 2023
    Publication date: April 25, 2024
    Inventors: Zhihong Ding, Scott Cohen, Matthew Joss, Jianming Zhang, Darshan Prasad, Celso Gomes, Jonathan Brandt
  • Publication number: 20240135509
    Abstract: The present disclosure relates to systems, methods, and non-transitory computer-readable media that modify digital images via scene-based editing using image understanding facilitated by artificial intelligence. For example, in one or more embodiments the disclosed systems utilize generative machine learning models to create modified digital images portraying human subjects. In particular, the disclosed systems generate modified digital images by performing infill modifications to complete a digital image or human inpainting for portions of a digital image that portrays a human. Moreover, in some embodiments, the disclosed systems perform reposing of subjects portrayed within a digital image to generate modified digital images. In addition, the disclosed systems in some embodiments perform facial expression transfer and facial expression animations to generate modified digital images or animations.
    Type: Application
    Filed: March 27, 2023
    Publication date: April 25, 2024
    Inventors: Qing Liu, Jianming Zhang, Krishna Kumar Singh, Scott Cohen, Zhe Lin
  • Publication number: 20240135514
    Abstract: The present disclosure relates to systems, methods, and non-transitory computer-readable media that modify digital images via multi-layered scene completion techniques facilitated by artificial intelligence. For instance, in some embodiments, the disclosed systems receive a digital image portraying a first object and a second object against a background, where the first object occludes a portion of the second object. Additionally, the disclosed systems pre-process the digital image to generate a first content fill for the portion of the second object occluded by the first object and a second content fill for a portion of the background occluded by the second object. After pre-processing, the disclosed systems detect one or more user interactions to move or delete the first object from the digital image. The disclosed systems further modify the digital image by moving or deleting the first object and exposing the first content fill for the portion of the second object.
    Type: Application
    Filed: September 1, 2023
    Publication date: April 25, 2024
    Inventors: Daniil Pakhomov, Qing Liu, Zhihong Ding, Scott Cohen, Zhe Lin, Jianming Zhang, Zhifei Zhang, Ohiremen Dibua, Mariette Souppe, Krishna Kumar Singh, Jonathan Brandt
  • Publication number: 20240135512
    Abstract: The present disclosure relates to systems, methods, and non-transitory computer-readable media that modify digital images via scene-based editing using image understanding facilitated by artificial intelligence. For example, in one or more embodiments the disclosed systems utilize generative machine learning models to create modified digital images portraying human subjects. In particular, the disclosed systems generate modified digital images by performing infill modifications to complete a digital image or human inpainting for portions of a digital image that portrays a human. Moreover, in some embodiments, the disclosed systems perform reposing of subjects portrayed within a digital image to generate modified digital images. In addition, the disclosed systems in some embodiments perform facial expression transfer and facial expression animations to generate modified digital images or animations.
    Type: Application
    Filed: March 27, 2023
    Publication date: April 25, 2024
    Inventors: Krishna Kumar Singh, Yijun Li, Jingwan Lu, Duygu Ceylan Aksit, Yangtuanfeng Wang, Jimei Yang, Tobias Hinz, Qing Liu, Jianming Zhang, Zhe Lin
  • Publication number: 20240127509
    Abstract: The present disclosure relates to systems, methods, and non-transitory computer-readable media that modify two-dimensional images via scene-based editing using three-dimensional representations of the two-dimensional images. For instance, in one or more embodiments, the disclosed systems utilize three-dimensional representations of two-dimensional images to generate and modify shadows in the two-dimensional images according to various shadow maps. Additionally, the disclosed systems utilize three-dimensional representations of two-dimensional images to modify humans in the two-dimensional images. The disclosed systems also utilize three-dimensional representations of two-dimensional images to provide scene scale estimation via scale fields of the two-dimensional images. In some embodiments, the disclosed systems utilizes three-dimensional representations of two-dimensional images to generate and visualize 3D planar surfaces for modifying objects in two-dimensional images.
    Type: Application
    Filed: April 20, 2023
    Publication date: April 18, 2024
    Inventors: Yannick Hold-Geoffroy, Jianming Zhang, Byeonguk Lee
  • Publication number: 20240127452
    Abstract: The present disclosure relates to systems, methods, and non-transitory computer readable media for panoptically guiding digital image inpainting utilizing a panoptic inpainting neural network. In some embodiments, the disclosed systems utilize a panoptic inpainting neural network to generate an inpainted digital image according to panoptic segmentation map that defines pixel regions corresponding to different panoptic labels. In some cases, the disclosed systems train a neural network utilizing a semantic discriminator that facilitates generation of digital images that are realistic while also conforming to a semantic segmentation. The disclosed systems generate and provide a panoptic inpainting interface to facilitate user interaction for inpainting digital images. In certain embodiments, the disclosed systems iteratively update an inpainted digital image based on changes to a panoptic segmentation map.
    Type: Application
    Filed: October 3, 2022
    Publication date: April 18, 2024
    Inventors: Zhe Lin, Haitian Zheng, Elya Shechtman, Jianming Zhang, Jingwan Lu, Ning Xu, Qing Liu, Scott Cohen, Sohrab Amirghodsi
  • Publication number: 20240127411
    Abstract: The present disclosure relates to systems, methods, and non-transitory computer readable media for panoptically guiding digital image inpainting utilizing a panoptic inpainting neural network. In some embodiments, the disclosed systems utilize a panoptic inpainting neural network to generate an inpainted digital image according to panoptic segmentation map that defines pixel regions corresponding to different panoptic labels. In some cases, the disclosed systems train a neural network utilizing a semantic discriminator that facilitates generation of digital images that are realistic while also conforming to a semantic segmentation. The disclosed systems generate and provide a panoptic inpainting interface to facilitate user interaction for inpainting digital images. In certain embodiments, the disclosed systems iteratively update an inpainted digital image based on changes to a panoptic segmentation map.
    Type: Application
    Filed: October 3, 2022
    Publication date: April 18, 2024
    Inventors: Zhe Lin, Haitian Zheng, Elya Shechtman, Jianming Zhang, Jingwan Lu, Ning Xu, Qing Liu, Scott Cohen, Sohrab Amirghodsi
  • Publication number: 20240127410
    Abstract: The present disclosure relates to systems, methods, and non-transitory computer readable media for panoptically guiding digital image inpainting utilizing a panoptic inpainting neural network. In some embodiments, the disclosed systems utilize a panoptic inpainting neural network to generate an inpainted digital image according to panoptic segmentation map that defines pixel regions corresponding to different panoptic labels. In some cases, the disclosed systems train a neural network utilizing a semantic discriminator that facilitates generation of digital images that are realistic while also conforming to a semantic segmentation. The disclosed systems generate and provide a panoptic inpainting interface to facilitate user interaction for inpainting digital images. In certain embodiments, the disclosed systems iteratively update an inpainted digital image based on changes to a panoptic segmentation map.
    Type: Application
    Filed: October 3, 2022
    Publication date: April 18, 2024
    Inventors: Zhe Lin, Haitian Zheng, Elya Shechtman, Jianming Zhang, Jingwan Lu, Ning Xu, Qing Liu, Scott Cohen, Sohrab Amirghodsi
  • Publication number: 20240127412
    Abstract: The present disclosure relates to systems, methods, and non-transitory computer readable media for panoptically guiding digital image inpainting utilizing a panoptic inpainting neural network. In some embodiments, the disclosed systems utilize a panoptic inpainting neural network to generate an inpainted digital image according to panoptic segmentation map that defines pixel regions corresponding to different panoptic labels. In some cases, the disclosed systems train a neural network utilizing a semantic discriminator that facilitates generation of digital images that are realistic while also conforming to a semantic segmentation. The disclosed systems generate and provide a panoptic inpainting interface to facilitate user interaction for inpainting digital images. In certain embodiments, the disclosed systems iteratively update an inpainted digital image based on changes to a panoptic segmentation map.
    Type: Application
    Filed: October 3, 2022
    Publication date: April 18, 2024
    Inventors: Zhe Lin, Haitian Zheng, Elya Shechtman, Jianming Zhang, Jingwan Lu, Ning Xu, Qing Liu, Scott Cohen, Sohrab Amirghodsi
  • Patent number: 11948281
    Abstract: Methods and systems are provided for accurately filling holes, regions, and/or portions of high-resolution images using guided upsampling during image inpainting. For instance, an image inpainting system can apply guided upsampling to an inpainted image result to enable generation of a high-resolution inpainting result from a lower-resolution image that has undergone inpainting. To allow for guided upsampling during image inpainting, one or more neural networks can be used. For instance, a low-resolution result neural network (e.g., comprised of an encoder and a decoder) and a high-resolution input neural network (e.g., comprised of an encoder and a decoder). The image inpainting system can use such networks to generate a high-resolution inpainting image result that fills the hole, region, and/or portion of the image.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: April 2, 2024
    Assignee: Adobe Inc.
    Inventors: Zhe Lin, Yu Zeng, Jimei Yang, Jianming Zhang, Elya Shechtman
  • Patent number: 11932646
    Abstract: The present disclosure provides novel heteroaryl compounds of formula (VII). Such compounds are useful for the treatment of cancers.
    Type: Grant
    Filed: January 12, 2022
    Date of Patent: March 19, 2024
    Assignees: THE SCRIPPS RESEARCH INSTITUTE, DANA-FARBER CANCER INSTITUTE, INC.
    Inventors: Nathanael S. Gray, Jianming Zhang, Barun Okram, Xianming Deng, Jae Won Chang, Amy Wojciechowski
  • Patent number: 11935217
    Abstract: The present disclosure relates to systems, methods, and non-transitory computer readable media for accurately, efficiently, and flexibly generating harmonized digital images utilizing a self-supervised image harmonization neural network. In particular, the disclosed systems can implement, and learn parameters for, a self-supervised image harmonization neural network to extract content from one digital image (disentangled from its appearance) and appearance from another from another digital image (disentangled from its content). For example, the disclosed systems can utilize a dual data augmentation method to generate diverse triplets for parameter learning (including input digital images, reference digital images, and pseudo ground truth digital images), via cropping a digital image with perturbations using three-dimensional color lookup tables (“LUTs”).
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: March 19, 2024
    Assignee: Adobe Inc.
    Inventors: He Zhang, Yifan Jiang, Yilin Wang, Jianming Zhang, Kalyan Sunkavalli, Sarah Kong, Su Chen, Sohrab Amirghodsi, Zhe Lin