Patents by Inventor Jian-Ping Zheng

Jian-Ping Zheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11901122
    Abstract: A hybrid lithium-ion battery-capacitor (H-LIBC) energy storage device includes a hybrid composite cathode electrode having a lithium ion battery (LIB) cathode active material and a lithium ion capacitor (LIC) cathode active material. An anode electrode having a surface is pre-loaded and pressed with a lithium (Li) thin film source. The anode electrode is pre-lithiated with the lithium film source by positioning the Li film source on the surface of anode electrode after electrolyte filling and soaking processes, a separator and an organic solvent electrolytic solution including a lithium salt electrolyte are also provided. A method of making a hybrid lithium-ion battery-capacitor and a method of making a hybrid composite cathode for a hybrid lithium-ion battery-capacitor are also disclosed.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: February 13, 2024
    Assignees: FLORIDA STATE UNIVERSITY RESEARCH FOUNDATION, INC., SPEL TECHNOLOGIES PRIVATE LIMITED
    Inventors: Wanjun Ben Cao, Jin Yan, Xujie Chen, Jian-Ping Zheng, Annadanesh Shellikeri, Mark Andrew Hagen
  • Publication number: 20230203696
    Abstract: A method of making a catalyst layer of a membrane electrode assembly (MEA) for a polymer electrolyte membrane fuel cell includes the step of preparing a porous buckypaper layer comprising at least one selected from the group consisting of carbon nanofibers and carbon nanotubes. Platinum group metal nanoparticles are deposited in a liquid solution on an outer surface of the buckypaper to create a platinum group metal nanoparticle buckypaper. A proton conducting electrolyte is deposited on the platinum group metal nanoparticles by electrophoretic deposition to create a proton-conducting layer on the an outer surface of the platinum nanoparticles. An additional proton-conducting layer is deposited by contacting the platinum group metal nanoparticle buckypaper with a liquid proton-conducting composition in a solvent. The platinum group metal nanoparticle buckypaper is dried to remove the solvent. A membrane electrode assembly for a polymer electrolyte membrane fuel cell is also disclosed.
    Type: Application
    Filed: February 13, 2023
    Publication date: June 29, 2023
    Inventor: Jian-ping Zheng
  • Patent number: 11618963
    Abstract: A method of making a catalyst layer of a membrane electrode assembly (MEA) for a polymer electrolyte membrane fuel cell includes the step of preparing a porous buckypaper layer comprising at least one selected from the group consisting of carbon nanofibers and carbon nanotubes. Platinum group metal nanoparticles are deposited in a liquid solution on an outer surface of the buckypaper to create a platinum group metal nanoparticle buckypaper. A proton conducting electrolyte is deposited on the platinum group metal nanoparticles by electrophoretic deposition to create a proton-conducting layer on the an outer surface of the platinum nanoparticles. An additional proton-conducting layer is deposited by contacting the platinum group metal nanoparticle buckypaper with a liquid proton-conducting composition in a solvent. The platinum group metal nanoparticle buckypaper is dried to remove the solvent. A membrane electrode assembly for a polymer electrolyte membrane fuel cell is also disclosed.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: April 4, 2023
    Assignee: FLORIDA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventor: Jian-ping Zheng
  • Publication number: 20220277903
    Abstract: A hybrid lithium-ion battery-capacitor (H-LIBC) energy storage device includes a hybrid composite cathode electrode having a lithium ion battery (LIB) cathode active material and a lithium ion capacitor (LIC) cathode active material. An anode electrode having a surface is pre-loaded and pressed with a lithium (Li) thin film source. The anode electrode is pre-lithiated with the lithium film source by positioning the Li film source on the surface of anode electrode after electrolyte filling and soaking processes, a separator and an organic solvent electrolytic solution including a lithium salt electrolyte are also provided. A method of making a hybrid lithium-ion battery-capacitor and a method of making a hybrid composite cathode for a hybrid lithium-ion battery-capacitor are also disclosed.
    Type: Application
    Filed: December 16, 2021
    Publication date: September 1, 2022
    Inventors: Wanjun Ben Cao, Jin Yan, Xujie Chen, Jian-Ping Zheng, Annadanesh Shellikeri, Mark Andrew Hagen
  • Patent number: 11329311
    Abstract: A lithium-sulfur battery comprises a cathode electrode comprising from 80% to 100% lithium polysulfide based on the total weight of sulfur adsorbed at the cathode when the lithium sulfur battery is fully charged, and a high specific surface area electrically conductive material. An anode electrode comprises lithium. A porous and electrically insulating membrane is provided between the cathode and the anode electrodes. An electrolyte is adsorbed into and between cathode electrode, the anode electrode, and the membrane. A cathode current collector is electrically connected to the cathode and an anode current collector is electrically connected to the anode. A porous and electrically conductive interlayer can be provided between the membrane and at least one selected from the group consisting of the cathode and the anode. A method of making a battery is also disclosed.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: May 10, 2022
    Assignee: FLORIDA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventors: Jian-ping Zheng, Chao Shen
  • Patent number: 11211205
    Abstract: The present invention is directed to a method for pre-lithiation of negative electrodes during lithium loaded electrode manufacturing for use in lithium-ion capacitors. There is provided a system and method of manufacture of LIC electrodes using thin lithium film having holes therein, and in particular, to the process of manufacturing lithium loaded negative electrodes for lithium-ion capacitors by pre-lithiating electrodes with thin lithium metal films, wherein the thin lithium metal films include holes therein, and the lithium loaded negative electrodes are manufactured using a roll-to-roll lamination manufacturing, process.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: December 28, 2021
    Assignee: THE FLORIDA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventors: Wanjun Cao, Jian-ping Zheng
  • Patent number: 11011321
    Abstract: An electrochemical energy storage device includes an anode having a first mixture which includes a first plurality of electrically conductive carbon-comprising particles having a first average porosity, and lithium metal materials. The weight ratio of the first plurality of carbon-comprising and lithium metal materials is from 30:1 to 3:1. A cathode includes a second mixture having a second plurality of electrically conductive carbon-comprising particles having a second average porosity greater than the first average porosity, and lithium-intercalating metal oxide particles. The weight ratio of the second plurality of carbon-comprising and lithium-intercalating metal oxide particles is from 1:20 to 5:1. The weight ratio between the lithium metal materials loaded in the anode and the second plurality of carbon-comprising particles in the cathode is from 0.1-10%. An electrolyte physically and ionically contacts the anode and the cathode, and fills the pore volume in the anode, cathode and a porous separator.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: May 18, 2021
    Assignee: FLORIDA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventors: Jian-Ping Zheng, Junsheng Zheng
  • Publication number: 20210118624
    Abstract: The present invention is directed to a method for pre-lithiation of negative electrodes during lithium loaded electrode manufacturing for use in lithium-ion capacitors. There is provided a system and method of manufacture of LIC electrodes using thin lithium film having holes therein, and in particular, to the process of manufacturing lithium loaded negative electrodes for lithium-ion capacitors by pre-lithiating electrodes with thin lithium metal films, wherein the thin lithium metal films include holes therein, and the lithium loaded negative electrodes are manufactured using a roll-to-roll lamination manufacturing, process.
    Type: Application
    Filed: August 10, 2020
    Publication date: April 22, 2021
    Inventors: Wanjun Cao, Jian-ping Zheng
  • Patent number: 10923707
    Abstract: A method of making an electrode for an electrochemical cell includes the step of providing an electrode composite comprising from 70-98% active material, from 0-10% conductive material additives, and from 2-20% polymer binder, based on the total weight of the electrode composite. The electrode composite is mixed and then compressed the electrode composite into an electrode composite sheet. The electrode composite sheet is applied to a current collector with pressure to form an electrode, wherein the electrode possesses positive characteristics for adhesion according to ASTM standard test D3359-09e2, entitled Standard Test Methods for Measuring Adhesion by Tape Test, and wherein the electrode composite sheet and the electrode possess positive characteristics for flexibility according to the Mandrel Test. The binder can be a single nonfluoropolymer binder. Dry process electrodes are also disclosed.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: February 16, 2021
    Assignee: FLORIDA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventors: Jian-ping Zheng, Qiang Wu
  • Publication number: 20200106107
    Abstract: A method of making a catalyst layer of a membrane electrode assembly (MEA) for a polymer electrolyte membrane fuel cell includes the step of preparing a porous buckypaper layer comprising at least one selected from the group consisting of carbon nanofibers and carbon nanotubes. Platinum group metal nanoparticles are deposited in a liquid solution on an outer surface of the buckypaper to create a platinum group metal nanoparticle buckypaper. A proton conducting electrolyte is deposited on the platinum group metal nanoparticles by electrophoretic deposition to create a proton-conducting layer on the an outer surface of the platinum nanoparticles. An additional proton-conducting layer is deposited by contacting the platinum group metal nanoparticle buckypaper with a liquid proton-conducting composition in a solvent. The platinum group metal nanoparticle buckypaper is dried to remove the solvent. A membrane electrode assembly for a polymer electrolyte membrane fuel cell is also disclosed.
    Type: Application
    Filed: September 4, 2019
    Publication date: April 2, 2020
    Inventor: Jian-ping Zheng
  • Publication number: 20190318882
    Abstract: A hybrid lithium-ion battery-capacitor (H-LIBC) energy storage device includes a hybrid composite cathode electrode having a lithium ion battery (LIB) cathode active material and a lithium ion capacitor (LIC) cathode active material. An anode electrode having a surface is pre-loaded and pressed with a lithium (Li) thin film source. The anode electrode is pre-lithiated with the lithium film source by positioning the Li film source on the surface of anode electrode after electrolyte filling and soaking processes, A separator and an organic solvent electrolytic solution including a lithium salt electrolyte are also provided. A method of making a hybrid lithium-ion battery-capacitor and a method of making a hybrid composite cathode for a hybrid lithium-ion battery-capacitor are also disclosed.
    Type: Application
    Filed: April 16, 2019
    Publication date: October 17, 2019
    Inventors: Wanjun Ben Cao, Jin Yan, Xujie Chen, Jian-Ping Zheng, Annadanesh Shellikeri, Mark Andrew Hagen
  • Publication number: 20190229366
    Abstract: A lithium-sulfur battery comprises a cathode electrode comprising from 80% to 100% lithium polysulfide based on the total weight of sulfur adsorbed at the cathode when the lithium sulfur battery is fully charged, and a high specific surface area electrically conductive material. An anode electrode comprises lithium. A porous and electrically insulating membrane is provided between the cathode and the anode electrodes. An electrolyte is adsorbed into and between cathode electrode, the anode electrode, and the membrane. A cathode current collector is electrically connected to the cathode and an anode current collector is electrically connected to the anode. A porous and electrically conductive interlayer can be provided between the membrane and at least one selected from the group consisting of the cathode and the anode. A method of making a battery is also disclosed.
    Type: Application
    Filed: November 19, 2018
    Publication date: July 25, 2019
    Inventors: Jian-ping Zheng, Chao Shen
  • Patent number: 10354808
    Abstract: An electrochemical energy storage device includes an anode having a first mixture which includes a first plurality of electrically conductive carbon-comprising particles having a first average porosity, and lithium metal materials. The weight ratio of the first plurality of carbon-comprising and lithium metal materials is from 30:1 to 3:1. A cathode includes a second mixture having a second plurality of electrically conductive carbon-comprising particles having a second average porosity greater than the first average porosity, and lithium-intercalating metal oxide particles. The weight ratio of the second plurality of carbon-comprising and lithium-intercalating metal oxide particles is from 1:20 to 5:1. The weight ratio between the lithium metal materials loaded in the anode and the second plurality of carbon-comprising particles in the cathode is from 0.1-10%. An electrolyte physically and ionically contacts the anode and the cathode, and fills the pore volume in the anode, cathode and a porous separator.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: July 16, 2019
    Assignee: FLORIDA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventors: Jian-ping Zheng, Junsheng Zheng
  • Publication number: 20190139710
    Abstract: An electrochemical energy storage device includes an anode having a first mixture which includes a first plurality of electrically conductive carbon-comprising particles having a first average porosity, and lithium metal materials. The weight ratio of the first plurality of carbon-comprising and lithium metal materials is from 30:1 to 3:1. A cathode includes a second mixture having a second plurality of electrically conductive carbon-comprising particles having a second average porosity greater than the first average porosity, and lithium-intercalating metal oxide particles. The weight ratio of the second plurality of carbon-comprising and lithium-intercalating metal oxide particles is from 1:20 to 5:1. The weight ratio between the lithium metal materials loaded in the anode and the second plurality of carbon-comprising particles in the cathode is from 0.1-10%. An electrolyte physically and ionically contacts the anode and the cathode, and fills the pore volume in the anode, cathode and a porous separator.
    Type: Application
    Filed: November 9, 2018
    Publication date: May 9, 2019
    Inventors: Jian-ping ZHENG, Junsheng ZHENG
  • Patent number: 10126366
    Abstract: An apparatus for the in situ NMR monitoring of a battery including an anode, a separator and an air cathode is provided. The apparatus includes a non-metallic anode container portion, a non-metallic cathode container portion, and non-metallic connecting structure and sealing structure for connecting and sealing the anode container portion and the cathode container portion to define a hermetically sealed interior space for containing the battery with an anode of the battery adjacent the anode container portion and an air cathode of the battery adjacent the cathode container portion. The cathode container portion includes an air chamber portion with an air inlet and an air outlet. The air chamber portion can be adjacent to the air cathode such that air flowing from the air inlet to the air outlet will contact the air cathode. A method of evaluating an air cathode battery and a battery assembly for the NMR spectroscopy of an air cathode battery are also disclosed.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: November 13, 2018
    Assignee: FLORIDA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventors: Jian-ping Zheng, Annadanesh Shellikeri
  • Publication number: 20180175366
    Abstract: A method of making an electrode for an electrochemical cell includes the step of providing an electrode composite comprising from 70-98% active material, from 0-10% conductive material additives, and from 2-20% polymer binder, based on the total weight of the electrode composite. The electrode composite is mixed and then compressed the electrode composite into an electrode composite sheet. The electrode composite sheet is applied to a current collector with pressure to form an electrode, wherein the electrode possesses positive characteristics for adhesion according to ASTM standard test D3359-09e2, entitled Standard Test Methods for Measuring Adhesion by Tape Test, and wherein the electrode composite sheet and the electrode possess positive characteristics for flexibility according to the Mandrel Test. The binder can be a single nonfluoropolymer binder. Dry process electrodes are also disclosed.
    Type: Application
    Filed: June 27, 2016
    Publication date: June 21, 2018
    Inventors: Jian-ping Zheng, Qiang Wu
  • Patent number: 9991545
    Abstract: A metal air flow battery includes an electrochemical reaction unit and an oxygen exchange unit. The electrochemical reaction unit includes an anode electrode, a cathode electrode, and an ionic conductive membrane between the anode and the cathode, an anode electrolyte, and a cathode electrolyte. The oxygen exchange unit contacts the cathode electrolyte with oxygen separate from the electrochemical reaction unit. At least one pump is provided for pumping cathode electrolyte between the electrochemical reaction unit and the oxygen exchange unit. A method for producing an electrical current is also disclosed.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: June 5, 2018
    Assignee: FLORIDA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventors: Jian-ping Zheng, Petru Andrei, Annadanesh Shellikeri, Xujie Chen
  • Publication number: 20170301945
    Abstract: A metal air flow battery includes an electrochemical reaction unit and an oxygen exchange unit. The electrochemical reaction unit includes an anode electrode, a cathode electrode, and an ionic conductive membrane between the anode and the cathode, an anode electrolyte, and a cathode electrolyte. The oxygen exchange unit contacts the cathode electrolyte with oxygen separate from the electrochemical reaction unit. At least one pump is provided for pumping cathode electrolyte between the electrochemical reaction unit and the oxygen exchange unit. A method for producing an electrical current is also disclosed.
    Type: Application
    Filed: June 28, 2017
    Publication date: October 19, 2017
    Inventors: Jian-ping Zheng, Petru Andrei, Annadanesh Shellikeri, Xujie Chen
  • Patent number: 9722289
    Abstract: A metal air flow battery includes an electrochemical reaction unit and an oxygen exchange unit. The electrochemical reaction unit includes an anode electrode, a cathode electrode, and an ionic conductive membrane between the anode and the cathode, an anode electrolyte, and a cathode electrolyte. The oxygen exchange unit contacts the cathode electrolyte with oxygen separate from the electrochemical reaction unit. At least one pump is provided for pumping cathode electrolyte between the electrochemical reaction unit and the oxygen exchange unit. A method for producing an electrical current is also disclosed.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: August 1, 2017
    Assignee: Florida State University Research Foundation
    Inventors: Jian-ping Zheng, Petru Andrei, Annadanesh Shellikeri, Xujie Chen
  • Publication number: 20170062140
    Abstract: An electrochemical energy storage device includes an anode having a first mixture which includes a first plurality of electrically conductive carbon-comprising particles having a first average porosity, and lithium metal materials. The weight ratio of the first plurality of carbon-comprising and lithium metal materials is from 30:1 to 3:1. A cathode includes a second mixture having a second plurality of electrically conductive carbon-comprising particles having a second average porosity greater than the first average porosity, and lithium-intercalating metal oxide particles. The weight ratio of the second plurality of carbon-comprising and lithium-intercalating metal oxide particles is from 1:20 to 5:1. The weight ratio between the lithium metal materials loaded in the anode and the second plurality of carbon-comprising particles in the cathode is from 0.1-10%. An electrolyte physically and ionically contacts the anode and the cathode, and fills the pore volume in the anode, cathode and a porous separator.
    Type: Application
    Filed: January 29, 2016
    Publication date: March 2, 2017
    Inventors: Jian-ping ZHENG, Junsheng ZHENG