Patents by Inventor Jianshu Chen

Jianshu Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170193360
    Abstract: A processing unit can operate a first recurrent computational model (RCM) to provide first state information and a predicted result value. The processing unit can operating a first network computational model (NCM) to provide respective expectation values of a plurality of actions based at least in part on the first state information. The processing unit can provide an indication of at least one of the plurality of actions, and receive a reference result value, e.g., via a communications interface. The processing unit can train the first RCM based at least in part on the predicted result value and the reference result value to provide a second RCM, and can train the first NCM based at least in part on the first state information and the at least one of the plurality of actions to provide a second NCM.
    Type: Application
    Filed: December 30, 2015
    Publication date: July 6, 2017
    Inventors: Jianfeng Gao, Li Deng, Xiaodong He, Prabhdeep Singh, Lihong Li, Jianshu Chen, Xiujun Li, Ji He
  • Publication number: 20170147942
    Abstract: A processing unit can successively operate layers of a multilayer computational graph (MCG) according to a forward computational order to determine a topic value associated with a document based at least in part on content values associated with the document. The processing unit can successively determine, according to a reverse computational order, layer-specific deviation values associated with the layers based at least in part on the topic value, the content values, and a characteristic value associated with the document. The processing unit can determine a model adjustment value based at least in part on the layer-specific deviation values. The processing unit can modify at least one parameter associated with the MCG based at least in part on the model adjustment value. The MCG can be operated to provide a result characteristic value associated with test content values of a test document.
    Type: Application
    Filed: November 23, 2015
    Publication date: May 25, 2017
    Inventors: Jianfeng Gao, Li Deng, Xiaodong He, Lin Xiao, Xinying Song, Yelong Shen, Ji He, Jianshu Chen
  • Publication number: 20170060844
    Abstract: Systems, methods, and computer-readable media for providing semantically-relevant discovery of solutions are described herein. In some examples, a computing device can receive an input, such as a query. The computing device can process each word of the input sequentially to determine a semantic representation of the input. Techniques and technologies described herein determine a response to the input, such as an answer, based on the semantic representation of the input matching a semantic representation of the response. An output including one or more relevant responses to the request can then be provided to the requestor. Example techniques described herein can apply machine learning to train a model with click-through data to provide semantically-relevant discovery of solutions. Example techniques described herein can apply recurrent neural networks (RNN) and/or long short term memory (LSTM) cells in the machine learning model.
    Type: Application
    Filed: August 28, 2015
    Publication date: March 2, 2017
    Inventors: Xiaodong He, Jianfeng Gao, Hamid Palangi, Xinying Song, Yelong Shen, Li Deng, Jianshu Chen
  • Publication number: 20160379112
    Abstract: A processing unit can acquire datasets from respective data sources, each having a respective unique data domain. The processing unit can determine values of a plurality of features based on the plurality of datasets. The processing unit can modify input-specific parameters or history parameters of a computational model based on the values of the features. In some examples, the processing unit can determine an estimated value of a target feature based at least in part on the modified computational model and values of one or more reference features. In some examples, the computational model can include neural networks for several input sets. An output layer of at least one of the neural networks can be connected to the respective hidden layer(s) of one or more other(s) of the neural networks. In some examples, the neural networks can be operated to provide transformed feature value(s) for respective times.
    Type: Application
    Filed: June 29, 2015
    Publication date: December 29, 2016
    Inventors: Xiaodong He, Jianshu Chen, Brendan WL Clement, Li Deng, Jianfeng Gao, Bochen Jin, Prabhdeep Singh, Sandeep P. Solanki, LuMing Wang, Hanjun Xian, Yilei Zhang, Mingyang Zhao, Zijian Zheng
  • Publication number: 20160323398
    Abstract: Techniques for providing a people recommendation system for predicting and recommending relevant people (or other entities) to include in a conversation based on contextual indicators. In an exemplary embodiment, email recipient recommendations may be suggested based on contextual signals, e.g., project names, body text, existing recipients, current date and time, etc. In an aspect, a plurality of properties including ranked key phrases are associated with profiles corresponding to personal entities. Aggregated profiles are analyzed using first- and second-layer processing techniques. The recommendations may be provided to the user reactively, e.g., in response to a specific query by the user to the people recommendation system, or proactively, e.g., based on the context of what the user is currently working on, in the absence of a specific query by the user.
    Type: Application
    Filed: July 22, 2015
    Publication date: November 3, 2016
    Inventors: Chenlei Guo, Jianfeng Gao, Xinying Song, Byungki Byun, Yelong Shen, Ye-Yi Wang, Brian D. Remick, Edward Thiele, Mohammed Aatif Ali, Marcus Gois, Xiaodong He, Jianshu Chen, Divya Jetley, Stephen Friesen