Patents by Inventor Jianyuan Min

Jianyuan Min has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230394627
    Abstract: Systems, processes, and techniques to automatically detect and enlarge a speaking one of plurality of participants on one side of a video conference. In at least one embodiment, the speaking participant is identified using one or more heuristics and/or one or more neural networks.
    Type: Application
    Filed: August 21, 2023
    Publication date: December 7, 2023
    Inventors: Akarsh Umesh Zingade, Jianyuan Min, Shuye Han, Rochelle Pereira
  • Patent number: 11748845
    Abstract: Systems, processes, and techniques to automatically detect and enlarge a speaking one of plurality of participants on one side of a video conference. In at least one embodiment, the speaking participant is identified using one or more heuristics and/or one or more neural networks.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: September 5, 2023
    Assignee: NVIDIA Corporation
    Inventors: Akarsh Umesh Zingade, Jianyuan Min, Shuye Han, Rochelle Pereira
  • Publication number: 20230147759
    Abstract: A method to culling parts of a 3D reconstruction volume is provided. The method makes available to a wide variety of mobile XR applications fresh, accurate and comprehensive 3D reconstruction data with low usage of computational resources and storage spaces. The method includes culling parts of the 3D reconstruction volume against a depth image. The depth image has a plurality of pixels, each of which represents a distance to a surface in a scene. In some embodiments, the method includes culling parts of the 3D reconstruction volume against a frustum. The frustum is derived from a field of view of an image sensor, from which image data to create the 3D reconstruction is obtained.
    Type: Application
    Filed: January 4, 2023
    Publication date: May 11, 2023
    Applicant: Magic Leap, Inc.
    Inventors: Frank Thomas Steinbrücker, David Geoffrey Molyneaux, Zhongle Wu, Xiaolin Wei, Jianyuan Min, Yifu Zhang
  • Patent number: 11580705
    Abstract: A method to culling parts of a 3D reconstruction volume is provided. The method makes available to a wide variety of mobile XR applications fresh, accurate and comprehensive 3D reconstruction data with low usage of computational resources and storage spaces. The method includes culling parts of the 3D reconstruction volume against a depth image. The depth image has a plurality of pixels, each of which represents a distance to a surface in a scene. In some embodiments, the method includes culling parts of the 3D reconstruction volume against a frustum. The frustum is derived from a field of view of an image sensor, from which image data to create the 3D reconstruction is obtained.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: February 14, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Frank Thomas Steinbrücker, David Geoffrey Molyneaux, Zhongle Wu, Xiaolin Wei, Jianyuan Min, Yifu Zhang
  • Publication number: 20220374714
    Abstract: Real time content enhancement can be provided using a solution that is lightweight enough to operate on client devices, even for high resolution, high bitrate content. An enhancement process can include a neural network that upscales the content to a target resolution while also enhancing a visual quality of the content, such as to sharpen visual aspects of the content and reduce a presence of artifacts. Such an approach can enable compressed content to be transmitted in streams across a network, in order to conserve bandwidth and data transmission, while also enabling that content to be upscaled and enhanced at the client device in real time, such that a user or viewer can experience the content at, near, or above its intended or original visual quality.
    Type: Application
    Filed: May 19, 2021
    Publication date: November 24, 2022
    Inventors: Nandita Miyar Nayak, Akarsh Zingade, Jianyuan Min, Rochelle Pereira
  • Publication number: 20220237735
    Abstract: Systems, processes, and techniques to automatically detect and enlarge a speaking one of plurality of participants on one side of a video conference. In at least one embodiment, the speaking participant is identified using one or more heuristics and/or one or more neural networks.
    Type: Application
    Filed: January 27, 2021
    Publication date: July 28, 2022
    Inventors: Akarsh Umesh Zingade, Jianyuan Min, Shuye Han, Rochelle Pereira
  • Patent number: 11398081
    Abstract: An augmented reality/mixed reality system that provides a more immersive user experience. That experience is provided with increased speed of update for occlusion data by using depth sensor data augmented with lower-level reconstruction data. When operating in real-time dynamic environments, changes in the physical world can be reflected quickly in the occlusion data. Occlusion rendering using live depth data augmented with lower-level 3D reconstruction data, such as a raycast point cloud, can greatly reduce the latency for visual occlusion processing. Generating occlusion data in this way may provide faster operation of an XR system using less computing resources and enabling the system to be packaged in a battery operated wearable device.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: July 26, 2022
    Assignee: Magic Leap, Inc.
    Inventors: David Geoffrey Molyneaux, Frank Thomas Steinbrücker, Zhongle Wu, Xiaolin Wei, Jianyuan Min, Yifu Zhang
  • Patent number: 11321924
    Abstract: A method to efficiently update and manage outputs of real time or offline 3D reconstruction and scanning in a mobile device having limited resource and connection to the Internet is provided. The method makes available to a wide variety of mobile XR applications fresh, accurate and comprehensive 3D reconstruction data, in either single user applications or multi-user applications sharing and updating the same 3D reconstruction data. The method includes a block-based 3D data representation that allows local update and maintains neighbor consistency at the same time, and a multi-layer caching mechanism that retrieves, prefetches, and stores 3D data efficiently for XR applications.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: May 3, 2022
    Assignee: Magic Leap, Inc.
    Inventors: David Geoffrey Molyneaux, Frank Thomas Steinbrücker, Zhongle Wu, Xiaolin Wei, Jianyuan Min, Yifu Zhang
  • Patent number: 11263820
    Abstract: A method of operating a computing system to generate a model of an environment represented by a mesh is provided. The method allows to update 3D meshes to client applications in real time with low latency to support on the fly environment changes. The method provides 3D meshes adaptive to different levels of simplification requested by various client applications. The method provides local update, for example, updating the mesh parts that are changed since last update. The method also provides 3D meshes with planarized surfaces to support robust physics simulations. The method includes segmenting a 3D mesh into mesh blocks. The method also includes performing a multi-stage simplification on selected mesh blocks. The multi-stage simplification includes a pre-simplification operation, a planarization operation, and a post-simplification operation.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: March 1, 2022
    Assignee: Magic Leap, Inc.
    Inventors: David Geoffrey Molyneaux, Frank Thomas Steinbrücker, Zhongle Wu, Xiaolin Wei, Jianyuan Min, Yifu Zhang
  • Patent number: 11210852
    Abstract: A method of merging 3D meshes includes receiving a first mesh and a second mesh; performing spatial alignment to register the first mesh and the second mesh in a common world coordinate system; performing mesh clipping on the first mesh and the second mesh to remove redundant mesh vertices; performing geometry refinement around a clipping seam to close up mesh concatenation holes created by mesh clipping; and performing texture blending in regions adjacent the clipping seam to obtain a merged mesh.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: December 28, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Jianyuan Min, Xiaolin Wei
  • Publication number: 20210366124
    Abstract: In various examples, image data may be received that represents an image. Corner detection may be used to identify pixels that may be candidate corner points. The image data may be converted from a higher dimensional color space to a converted image in a lower dimensional color space, and boundaries may be identified within the converted image. A set of the candidate corner points may be determined that are within a threshold distance to one of the boundaries, and the set of the candidate corner points may be analyzed to determine a subset of the candidate corner points representative of corners of polygons. Using the subset of the candidate corner points, one or more polygons may be identified, and a filter may be applied to the polygons to identify a polygon as corresponding to a fiducial marker boundary of a fiducial marker.
    Type: Application
    Filed: August 4, 2021
    Publication date: November 25, 2021
    Inventors: Vukasin Milovanovic, Joy D'Souza, Rochelle Pereira, Jianyuan Min
  • Patent number: 11113819
    Abstract: In various examples, image data may be received that represents an image. Corner detection may be used to identify pixels that may be candidate corner points. The image data may be converted from a higher dimensional color space to a converted image in a lower dimensional color space, and boundaries may be identified within the converted image. A set of the candidate corner points may be determined that are within a threshold distance to one of the boundaries, and the set of the candidate corner points may be analyzed to determine a subset of the candidate corner points representative of corners of polygons. Using the subset of the candidate corner points, one or more polygons may be identified, and a filter may be applied to the polygons to identify a polygon as corresponding to a fiducial marker boundary of a fiducial marker.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: September 7, 2021
    Assignee: NVIDIA Corporation
    Inventors: Vukasin Milovanovic, Joy D'Souza, Rochelle Pereira, Jianyuan Min
  • Publication number: 20210248829
    Abstract: A method to culling parts of a 3D reconstruction volume is provided. The method makes available to a wide variety of mobile XR applications fresh, accurate and comprehensive 3D reconstruction data with low usage of computational resources and storage spaces. The method includes culling parts of the 3D reconstruction volume against a depth image. The depth image has a plurality of pixels, each of which represents a distance to a surface in a scene. In some embodiments, the method includes culling parts of the 3D reconstruction volume against a frustum. The frustum is derived from a field of view of an image sensor, from which image data to create the 3D reconstruction is obtained.
    Type: Application
    Filed: April 26, 2021
    Publication date: August 12, 2021
    Applicant: Magic Leap, Inc.
    Inventors: Frank Thomas Steinbrücker, David Geoffrey Molyneaux, Zhongle Wu, Xiaolin Wei, Jianyuan Min, Yifu Zhang
  • Patent number: 11024095
    Abstract: A method to culling parts of a 3D reconstruction volume is provided. The method makes available to a wide variety of mobile XR applications fresh, accurate and comprehensive 3D reconstruction data with low usage of computational resources and storage spaces. The method includes culling parts of the 3D reconstruction volume against a depth image. The depth image has a plurality of pixels, each of which represents a distance to a surface in a scene. In some embodiments, the method includes culling parts of the 3D reconstruction volume against a frustum. The frustum is derived from a field of view of an image sensor, from which image data to create the 3D reconstruction is obtained.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: June 1, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Frank Thomas Steinbrücker, David Geoffrey Molyneaux, Zhongle Wu, Xiaolin Wei, Jianyuan Min, Yifu Zhang
  • Publication number: 20210142581
    Abstract: An augmented reality/mixed reality system that provides a more immersive user experience. That experience is provided with increased speed of update for occlusion data by using depth sensor data augmented with lower-level reconstruction data. When operating in real-time dynamic environments, changes in the physical world can be reflected quickly in the occlusion data. Occlusion rendering using live depth data augmented with lower-level 3D reconstruction data, such as a raycast point cloud, can greatly reduce the latency for visual occlusion processing. Generating occlusion data in this way may provide faster operation of an XR system using less computing resources and enabling the system to be packaged in a battery operated wearable device.
    Type: Application
    Filed: December 17, 2020
    Publication date: May 13, 2021
    Applicant: MAGIC LEAP, INC.
    Inventors: David Geoffrey Molyneaux, Frank Thomas Steinbrücker, Zhongle Wu, Xiaolin Wei, Jianyuan Min, Yifu Zhang
  • Patent number: 10937246
    Abstract: A method of operating a computing system to generate a model of an environment represented by a mesh is provided. The method allows to update 3D meshes to client applications in real time with low latency to support on the fly environment changes. The method provides 3D meshes adaptive to different levels of simplification requested by various client applications. The method provides local update, for example, updating the mesh parts that are changed since last update. The method also provides 3D meshes with planarized surfaces to support robust physics simulations. The method includes segmenting a 3D mesh into mesh blocks. The method also includes performing a multi-stage simplification on selected mesh blocks. The multi-stage simplification includes a pre-simplification operation, a planarization operation, and a post-simplification operation.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: March 2, 2021
    Assignee: Magic Leap, Inc.
    Inventors: David Geoffrey Molyneaux, Frank Thomas Steinbrücker, Zhongle Wu, Xiaolin Wei, Jianyuan Min, Yifu Zhang
  • Publication number: 20210056763
    Abstract: A method of operating a computing system to generate a model of an environment represented by a mesh is provided. The method allows to update 3D meshes to client applications in real time with low latency to support on the fly environment changes. The method provides 3D meshes adaptive to different levels of simplification requested by various client applications. The method provides local update, for example, updating the mesh parts that are changed since last update. The method also provides 3D meshes with planarized surfaces to support robust physics simulations. The method includes segmenting a 3D mesh into mesh blocks. The method also includes performing a multi-stage simplification on selected mesh blocks. The multi-stage simplification includes a pre-simplification operation, a planarization operation, and a post-simplification operation.
    Type: Application
    Filed: October 26, 2020
    Publication date: February 25, 2021
    Applicant: Magic Leap, Inc.
    Inventors: David Geoffrey MOLYNEAUX, Frank Thomas STEINBRÜCKER, Zhongle WU, Xiaolin WEI, Jianyuan MIN, Yifu ZHANG
  • Patent number: 10902679
    Abstract: An augmented reality/mixed reality system that provides a more immersive user experience. That experience is provided with increased speed of update for occlusion data by using depth sensor data augmented with lower-level reconstruction data. When operating in real-time dynamic environments, changes in the physical world can be reflected quickly in the occlusion data. Occlusion rendering using live depth data augmented with lower-level 3D reconstruction data, such as a raycast point cloud, can greatly reduce the latency for visual occlusion processing. Generating occlusion data in this way may provide faster operation of an XR system using less computing resources and enabling the system to be packaged in a battery operated wearable device.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: January 26, 2021
    Assignee: MAGIC LEAP, INC.
    Inventors: David Geoffrey Molyneaux, Frank Thomas Steinbrücker, Zhongle Wu, Xiaolin Wei, Jianyuan Min, Yifu Zhang
  • Publication number: 20200342677
    Abstract: A method to efficiently update and manage outputs of real time or offline 3D reconstruction and scanning in a mobile device having limited resource and connection to the Internet is provided. The method makes available to a wide variety of mobile XR applications fresh, accurate and comprehensive 3D reconstruction data, in either single user applications or multi-user applications sharing and updating the same 3D reconstruction data. The method includes a block-based 3D data representation that allows local update and maintains neighbor consistency at the same time, and a multi-layer caching mechanism that retrieves, prefetches, and stores 3D data efficiently for XR applications.
    Type: Application
    Filed: July 9, 2020
    Publication date: October 29, 2020
    Applicant: Magic Leap, Inc.
    Inventors: David Geoffrey MOLYNEAUX, Frank Thomas STEINBRÜCKER, Zhongle WU, Xiaolin WEI, Jianyuan MIN, Yifu ZHANG
  • Publication number: 20200312023
    Abstract: A method of merging 3D meshes includes receiving a first mesh and a second mesh; performing spatial alignment to register the first mesh and the second mesh in a common world coordinate system; performing mesh clipping on the first mesh and the second mesh to remove redundant mesh vertices; performing geometry refinement around a clipping seam to close up mesh concatenation holes created by mesh clipping; and performing texture blending in regions adjacent the clipping seam to obtain a merged mesh.
    Type: Application
    Filed: June 15, 2020
    Publication date: October 1, 2020
    Applicant: Magic Leap, Inc.
    Inventors: Jianyuan Min, Xiaolin Wei