Patents by Inventor Jianzhao Wang

Jianzhao Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130324443
    Abstract: A salt-tolerant, thermally-stable rheology modifier and, in particular, a rheology modifier for applications in oil-field well-bore fluids. In accordance with one aspect, the rheology modifier comprises a terpolymer of acrylamide, 2-acrylamido-2-methyl-propanesulfonic acid (AMPS) and a long-chain alkyl acrylate wherein the terpolymer is prepared by dispersion polymerization.
    Type: Application
    Filed: October 25, 2011
    Publication date: December 5, 2013
    Applicant: ISP Investments Inc.
    Inventors: Janice Jianzhao Wang, Jun Zheng, David Farrar, OSama M. Musa
  • Patent number: 8436131
    Abstract: Disclosed are phosphinic acid compounds of formula I, II or III where R1 and R1? are for instance straight or branched C1-C50alkyl, R2 is for instance straight or branched C22-C50alkyl, R3 and R3? are for instance straight or branched C1-C50alkyl, R4 is for instance straight or branched C1-C50alkylene and m is from 2 t 100. Also disclosed are polyester compositions comprising the compounds of formula I, II and III.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: May 7, 2013
    Assignee: BASF SE
    Inventors: Paul Odorisio, Stephen M. Andrews, Thomas F. Thompson, Si Wu, Paragkumar Thanki, Deepak M. Rane, Delina Joseph, Jianzhao Wang
  • Publication number: 20130035451
    Abstract: Disclosed are phosphinic acid compounds of formula I, II or III where R1 and R1? are for instance straight or branched C1-C50alkyl, R2 is for instance straight or branched C22-C50alkyl, R3 and R3? are for instance straight or branched C1-C50alkyl, R4 is for instance straight or branched C1-C50alkylene and m is from 2 to 100. Also disclosed are polyester compositions comprising the compounds of formula I, II and III.
    Type: Application
    Filed: August 7, 2012
    Publication date: February 7, 2013
    Inventors: Paul Odorisio, Stephen M. Andrews, Thomas F. Thompson, Si Wu, Paragkumar Thanki, Deepak M. Rane, Delina Joseph, Jianzhao Wang
  • Patent number: 8258253
    Abstract: Disclosed is a method for increasing the solid state polymerization (SSP) rates of metal catalyzed polyesters. The method comprises in a first step, reacting a dicarboxylic acid or a C1-C4 dicarboxylic diester with a diol at a suitable temperature and pressure to effect esterification or transesterification to prepare a precondensate and in a second step, reacting the precondensate to effect polycondensation at a suitable temperature and pressure to prepare a high molecular weight polyester and in a third step, further increasing the molecular weight and viscosity of the polyester under SSP conditions of a suitable temperature and pressure, where a metal catalyst is added in the first step or in the second step as a reaction catalyst, and where a certain phosphinic acid compound is added in the first step, in the second step or just prior to the third step. The polyester product exhibits low aldehyde formation during melt processing steps as well as excellent color.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: September 4, 2012
    Assignee: BASF SE
    Inventors: Paul Odorisio, Stephen M. Andrews, Thomas F. Thompson, Si Wu, Paragkumar Thanki, Deepak M. Rane, Delina Joseph, Jianzhao Wang
  • Publication number: 20110306710
    Abstract: Disclosed is a method for increasing the solid state polymerization (SSP) rates of metal catalyzed polyesters. The method comprises in a first step, reacting a dicarboxylic acid or a C1-C4 dicarboxylic diester with a diol at a suitable temperature and pressure to effect esterification or transesterification to prepare a precondensate and in a second step, reacting the precondensate to effect polycondensation at a suitable temperature and pressure to prepare a high molecular weight polyester and in a third step, further increasing the molecular weight and viscosity of the polyester under SSP conditions of a suitable temperature and pressure, where a metal catalyst is added in the first step or in the second step as a reaction catalyst, and where a certain phosphinic acid compound is added in the first step, in the second step or just prior to the third step. The polyester product exhibits low aldehyde formation during melt processing steps as well as excellent color.
    Type: Application
    Filed: August 22, 2011
    Publication date: December 15, 2011
    Inventors: Paul Odorisio, Stephen M. Andrews, Thomas F. Thompson, Si Wu, Paragkumar Thanki, Deepak M. Rane, Delina Joseph, Jianzhao Wang
  • Patent number: 8030435
    Abstract: Disclosed is a method for increasing the solid state polymerization (SSP) rates of metal catalyzed polyesters. The method comprises in a first step, reacting a dicarboxylic acid or a C1-C4 dicarboxylic diester with a diol at a suitable temperature and pressure to effect esterification or transesterification to prepare a precondensate and in a second step, reacting the precondensate to effect polycondensation at a suitable temperature and pressure to prepare a high molecular weight polyester and in a third step, further increasing the molecular weight and viscosity of the polyester under SSP conditions of a suitable temperature and pressure, where a metal catalyst is added in the first step or in the second step as a reaction catalyst, and where a certain phosphinic acid compound is added in the first step, in the second step or just prior to the third step. The polyester product exhibits low aldehyde formation during melt processing steps as well as excellent color.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: October 4, 2011
    Assignee: Ciba Corporation
    Inventors: Paul Odorisio, Stephen M. Andrews, Thomas F. Thompson, Si Wu, Paragkumar Thanki, Deepak M. Rane, Delina Joseph, Jianzhao Wang
  • Patent number: 7678878
    Abstract: Disclosed is a method for the preparation of a polyester, which method comprises in a first step, reacting a dicarboxylic acid or a C1-C4 dicarboxylic diester with a diol at a suitable temperature and pressure to effect esterification or transesterification to prepare a precondensate and in a second step, reacting the precondensate to effect polycondensation at a suitable temperature and pressure to prepare a high molecular weight polyester, where a metal phosphonic acid complex compound of the formula is employed in the first step, in the second step or in both the first and second steps as a reaction catalyst.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: March 16, 2010
    Assignee: Ciba Specialty Chemicals Corporation
    Inventors: Stephen M. Andrews, Jianzhao Wang, Thomas Thompson, Paragkumar N. Thanki, Deepak M. Rane, Suhas D. Sahasrabudhe, Preetam P. Ghogale, Paul A. Odorisio, Si Wu
  • Publication number: 20090253888
    Abstract: Disclosed is a method for increasing the solid state polymerization (SSP) rates of metal catalyzed polyesters. The method comprises in a first step, reacting a dicarboxylic acid or a C1-C4 dicarboxylic diester with a diol at a suitable temperature and pressure to effect esterification or transesterification to prepare a precondensate and in a second step, reacting the precondensate to effect polycondensation at a suitable temperature and pressure to prepare a high molecular weight polyester and in a third step, further increasing the molecular weight and viscosity of the polyester under SSP conditions of a suitable temperature and pressure, where a metal catalyst is added in the first step or in the second step as a reaction catalyst, and where a certain phosphinic acid compound is added in the first step, in the second step or just prior to the third step. The polyester product exhibits low aldehyde formation during melt processing steps as well as excellent color.
    Type: Application
    Filed: March 31, 2009
    Publication date: October 8, 2009
    Inventors: Paul Odorisio, Stephen M. Andrews, Thomas F. Thompson, Si Wu, Paragkumar Thanki, Deepak M. Rane, Delina Joseph, Jianzhao Wang
  • Publication number: 20090143561
    Abstract: Disclosed is a method for the preparation of a polyester, which method comprises in a first step, reacting a dicarboxylic acid or a C1-C4 dicarboxylic diester with a diol at a suitable temperature and pressure to effect esterification or transesterification to prepare a precondensate and in a second step, reacting the precondensate to effect polycondensation at a suitable temperature and pressure to prepare a high molecular weight polyester, where a metal phosphonic acid complex compound of the formula is employed in the first step, in the second step or in both the first and second steps as a reaction catalyst; and wherein n is 0, 1, 2, 3, 4, 5 or 6; p is an integer from 1 to 30; M is a metal selected from the group consisting of Li, Na, K, Cs, Be, Ca, Mg, Sr, Ba, Al, Sb, Cd, Mn, Fe, Co, Ni, Cu and Zn; v is the valency of the metal M and is 1, 2 or 3; q is an integer from 1 to 20 where q=2p/v; and R1 is hydrogen, straight or branched chain alkyl of 1 to 36 carbon atoms, straight or branched chain alkeny
    Type: Application
    Filed: January 26, 2009
    Publication date: June 4, 2009
    Inventors: Stephen M. Andrews, Jianzhao Wang, Thomas Thompson, Paragkumar N. Thanki, Deepak M. Rane, Suhas D. Sahasrabudhe, Preetam P. Ghogale, Paul A. Odorisio, Si Wu
  • Publication number: 20080108779
    Abstract: Disclosed is a method for the preparation of a polyester, which method comprises in a first step, reacting a dicarboxylic acid or a C1-C4 dicarboxylic diester with a diol at a suitable temperature and pressure to effect esterification or transesterification to prepare a precondensate and in a second step, reacting the precondensate to effect polycondensation at a suitable temperature and pressure to prepare a high molecular weight polyester, where a metal phosphonic acid complex compound of the formula is employed in the first step, in the second step or in both the first and second steps as a reaction catalyst; and wherein n is 0, 1, 2, 3, 4, 5 or 6; p is an integer from 1 to 30; M is a metal selected from the group consisting of Li, Na, K, Cs, Be, Ca, Mg, Sr, Ba, Al, Sb, Cd, Mn, Fe, Co, Ni, Cu and Zn; v is the valency of the metal M and is 1, 2 or 3; q is an integer from 1 to 20 where q=2p/v; and R1 is hydrogen, straight or branched chain alkyl of 1 to 36 carbon atoms, straight or branched chain alkenyl
    Type: Application
    Filed: September 17, 2007
    Publication date: May 8, 2008
    Inventors: Stephen Andrews, Jianzhao Wang, Thomas Thompson, Paragkumar Thanki, Deepak Rane, Suhas Sahasrabudhe, Preetam Ghogale, Paul Odorisio, Si Wu
  • Patent number: 6936664
    Abstract: The present invention discloses reworkable epoxy compositions suitable for encapsulation of and underfill for electronic components comprising (a) a curable epoxy component which is the reaction product of an epoxidized 1-alkenyl ether or 1-cycloalkenyl ether and a polycarboxylic acid, the reaction product being substantially free of unreacted acid or acid impurities; and (b) a curing agent for the epoxy component, wherein the reaction products of the epoxy composition are reworkable. The cured epoxy compositions of this invention contain thermally labile weak ?-alkoxy ester linkages which provide for the reworkable aspect of the invention.
    Type: Grant
    Filed: October 4, 2001
    Date of Patent: August 30, 2005
    Assignee: Henkel Corporation
    Inventors: John G. Woods, Susanne D. Morrill, Jianzhao Wang, Brendan J. Kneafsey
  • Patent number: 6887737
    Abstract: This invention relates to epoxidized acetals and thioacetals, episulfidized acetals and thioacetals, thermosetting resin compositions based on such epoxidized acetals and thioacetals, episulfidized acetals and thioacetals, reaction products of which are controllably degradable when subjected to appropriate conditions.
    Type: Grant
    Filed: December 13, 2001
    Date of Patent: May 3, 2005
    Assignee: Henkel Corporation
    Inventors: John G. Woods, Afranio Torres-Filho, Rebecca L. Tishkoff, Erin K. Yaeger, Jianzhao Wang
  • Publication number: 20040102544
    Abstract: The present invention discloses reworkable epoxy compositions suitable for encapsulation of and underfill for electronic components comprising (a) a curable epoxy component which is the reaction product of an epoxidized 1-alkenyl ether or 1-cycloalkenyl ether and a polycarboxylic acid, the reaction product being substantially free of unreacted acid or acid impurities; and (b) a curing agent for the epoxy component, wherein the reaction products of the epoxy composition are reworkable. The cured epoxy compositions of this invention contain thermally labile weak &agr;-alkoxy ester linkages which provide for the reworkable aspect of the invention.
    Type: Application
    Filed: May 5, 2003
    Publication date: May 27, 2004
    Inventors: John G Woods, Susanne D Morrill, Jianzhao Wang, Brendan J Kneafsley
  • Patent number: 6740193
    Abstract: In accordance with the present invention, there are provided gem-diesters and epoxidized derivatives thereof. When cured, thermosets comprising invention gem-diesters and epoxidized derivatives thereof have thermally and/or chemically labile gem-diester groups interspersed throughout the crosslinked network. Thus, thermosets based on invention gem-diesters and epoxidized derivatives thereof can be easily reworked thermally or chemically by treatment with dilute acidic or basic solutions. Further provided by the present invention are adhesive compositions comprising invention gem-diesters and epoxidized derivatives thereof.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: May 25, 2004
    Assignee: Henkel Corporation
    Inventors: John G. Woods, Jianzhao Wang, Jean M. J. Fréchet
  • Publication number: 20030157334
    Abstract: In accordance with the present invention, there are provided gem-diesters and epoxidized derivatives thereof. When cured, thermosets comprising invention gem-diesters and epoxidized derivatives thereof have thermally and/or chemically labile gem-diester groups interspersed throughout the crosslinked network. Thus, thermosets based on invention gem-diesters and epoxidized derivatives thereof can be easily reworked thermally or chemically by treatment with dilute acidic or basic solutions. Further provided by the present invention are adhesive compositions comprising invention gem-diesters and epoxidized derivatives thereof.
    Type: Application
    Filed: December 21, 2001
    Publication date: August 21, 2003
    Applicant: Loctite Corporation
    Inventors: John G. Woods, Jianzhao Wang, Jean M.J. Frechet