Patents by Inventor Jiaqi Qiu

Jiaqi Qiu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11975593
    Abstract: A heat pump system, a heat management method and a vehicle are provided. The heat pump system includes an integrated heat exchanger integrated with a superconducting liquid flow passage and a refrigerant flow passage. The refrigerant flow passage is provided inside an on-board refrigerant circulation loop and is used for cooling and/or heating to adjust the temperature within a passenger compartment of a vehicle. The superconducting liquid flow passage is in communication with a motor heat dissipating conduit, for absorbing the heat generated by an on board motor and transferring the heat to the integrated heat exchanger by means of phase change heat transfer. The heat pump system can increase the energy utilization rate for the vehicle and reduce the allowable ambient temperature of the heat pump system.
    Type: Grant
    Filed: February 17, 2020
    Date of Patent: May 7, 2024
    Assignees: ZHEJIANG GEELY HOLDING GROUP CO., LTD., CHONGQING LIVAN AUTOMOBILE R&D INSTITUTE CO., LTD
    Inventors: Lanbao Cao, Quankai Yang, Zhonggang Liu, Xiujuan Xu, Yanlin Liu, Guopin Tong, Chao Gao, Yanli Wang, Songyan Li, Ya Cui, Jingyu Chen, Feng Qiu, Jiaqi Zhang
  • Publication number: 20200343013
    Abstract: An electromagnetic mechanical pulser implements a transverse wave metallic comb stripline TWMCS kicker having inwardly opposing teeth that retards a phase velocity of an RF traveling wave to match the kinetic velocity of a continuous electron beam, causing the beam to oscillate before being chopped into pulses by an aperture. The RF phase velocity is substantially independent of RF frequency and amplitude, thereby enabling independent tuning of the electron pulse widths and repetition rate. The TWMCS further comprises an electron pulse picker (EPP) that applies a pulsed transverse electric field across the TWMCS to deflect electrons out of the beam, allowing only selected electrons and/or groups of electrons to pass through. The EPP pulses can be synchronized with the RF traveling wave and/or with a pumping trigger of a transverse electron microscope (TEM), for example to obtain dynamic TEM images in real time.
    Type: Application
    Filed: October 24, 2019
    Publication date: October 29, 2020
    Applicant: Euclid Techlabs, LLC
    Inventors: Chunguang Jing, Jiaqi Qiu, Ao Liu, Eric John Montgomery, Yubin Zhao, Wade Rush, Roman Kostin, Alexei Kanareykin
  • Patent number: 10804001
    Abstract: An electromagnetic mechanical pulser implements a transverse wave metallic comb stripline TWMCS kicker having inwardly opposing teeth that retards a phase velocity of an RF traveling wave to match the kinetic velocity of a continuous electron beam, causing the beam to oscillate before being chopped into pulses by an aperture. The RF phase velocity is substantially independent of RF frequency and amplitude, thereby enabling independent tuning of the electron pulse widths and repetition rate. The TWMCS further comprises an electron pulse picker (EPP) that applies a pulsed transverse electric field across the TWMCS to deflect electrons out of the beam, allowing only selected electrons and/or groups of electrons to pass through. The EPP pulses can be synchronized with the RF traveling wave and/or with a pumping trigger of a transverse electron microscope (TEM), for example to obtain dynamic TEM images in real time.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: October 13, 2020
    Assignee: Euclid Technlabs, LLC
    Inventors: Chunguang Jing, Jiaqi Qiu, Ao Liu, Eric John Montgomery, Yubin Zhao, Wade Rush, Roman Kostin, Alexei Kanareykin
  • Patent number: 10515733
    Abstract: An electromagnetic mechanical pulser implements a transverse wave metallic comb stripline TWMCS kicker having inwardly opposing teeth structured to retard a phase velocity of an RF traveling wave propagated therethrough to match the kinetic velocity of a continuous electron beam simultaneously propagated therethrough. The kicker imposes transverse oscillations onto the beam, which is subsequently chopped into pulses by an aperture. The RF phase velocity is substantially independent of RF frequency and amplitude, thereby enabling independent tuning of the electron pulse widths and repetition rate. The exterior surface of the kicker is conductive, thereby avoiding electron charging. In embodiments, various elements of the kicker and/or aperture can be mechanically varied to provide further tuning of the pulsed electron beam. A divergence suppression section can include a mirror TWMCS and/or magnetic quadrupoles.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: December 24, 2019
    Assignee: Euclid Techlabs, LLC
    Inventors: Chunguang Jing, Jiaqi Qiu, Ao Liu, Eric John Montgomery, Yubin Zhao, Wade Rush, Roman Kostin, Alexei Kanareykin
  • Patent number: 10319556
    Abstract: An ElectroMagnetic-Mechanical Pulser (“EMMP”) generates electron pulses at a continuously tunable rate between 100 MHz and 20-50 GHz, with energies up to 0.5 MeV, duty cycles up to 20%, and pulse widths between 100 fs and 10 ps. A dielectric-filled Traveling Wave Transmission Stripline (“TWTS”) that is terminated by an impedance-matching load such as a 50 ohm load imposes a transverse modulation on a continuous electron beam. The dielectric is configured such that the phase velocity of RF propagated through the TWTS matches a desired electron energy, which can be between 100 and 500 keV, thereby transferring electromagnetic energy to the electrons. The beam is then chopped into pulses by an adjustable aperture. Pulse dispersion arising from the modulation is minimized by a suppressing section that includes a mirror demodulating TWTS, so that the spatial and temporal coherence of the pulses is substantially identical to the input beam.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: June 11, 2019
    Assignee: Euclid Techlabs, LLC
    Inventors: Chunguang Jing, Jiaqi Qiu, Sergey V Baryshev, June W Lau, Yimei Zhu
  • Patent number: 9913360
    Abstract: A resonant apparatus such as a resonant waveguide module in an RF particle accelerator includes an unbrazed joint that provides a reliable vacuum seal and RF contact between resonators with precisely controlled internal geometry. The joint can be disassembled and reassembled without degradation. Hard, stainless steel end faces include knife edges pressed into a copper central component, such as a gasket. The knife edges extend the waveguide interiors without gaps or interruptions. The central component serves as a coupling iris or other functional component of the resonant apparatus, thereby allowing the central component to have substantial dimensions that inhibit mechanical distortions thereof. The waveguides and knife edges can be copper plated. Embodiments include embedded passages and/or recesses used for cooling, radiation shielding, magnetic focusing coils, and/or electron optics element formed by permanent magnets.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: March 6, 2018
    Assignee: Euclid TechLabs, LLC
    Inventors: Sergey Antipov, Roman Kostin, Sergey Kuzikov, Chunguang Jing, Jiaqi Qiu
  • Patent number: 9697982
    Abstract: An ElectroMagnetic-Mechanical Pulser can generate electron pulses at rates up to 50 GHz, energies up to 1 MeV, duty cycles up to 10%, and pulse widths between 100 fs and 10 ps. A modulating Transverse Deflecting Cavity (“TDC”) imposes a transverse modulation on a continuous electron beam, which is then chopped into pulses by an adjustable Chopping Collimating Aperture. Pulse dispersion due to the modulating TDC is minimized by a suppressing section comprising a plurality of additional TDC's and/or magnetic quadrupoles. In embodiments the suppression section includes a magnetic quadrupole and a TDC followed by four additional magnetic quadrupoles. The TDC's can be single-cell or triple-cell. A fundamental frequency of at least one TDC can be tuned by literally or virtually adjusting its volume. TDC's can be filled with vacuum, air, or a dielectric or ferroelectric material. Embodiments are easily switchable between passive, continuous mode and active pulsed mode.
    Type: Grant
    Filed: April 6, 2016
    Date of Patent: July 4, 2017
    Assignee: Euclid Techlabs, LLC
    Inventors: Sergey V Baryshev, Chunguang Jing, Jiaqi Qiu, Sergey Antipov, Gwanghui Ha, June W Lau, Yimei Zhu
  • Publication number: 20170162361
    Abstract: An ElectroMagnetic-Mechanical Pulser (“EMMP”) generates electron pulses at a continuously tunable rate between 100 MHz and 20-50 GHz, with energies up to 0.5 MeV, duty cycles up to 20%, and pulse widths between 100 fs and 10 ps. A dielectric-filled Traveling Wave Transmission Stripline (“TWTS”) that is terminated by an impedance-matching load such as a 50 ohm load imposes a transverse modulation on a continuous electron beam. The dielectric is configured such that the phase velocity of RF propagated through the TWTS matches a desired electron energy, which can be between 100 and 500 keV, thereby transferring electromagnetic energy to the electrons. The beam is then chopped into pulses by an adjustable aperture. Pulse dispersion arising from the modulation is minimized by a suppressing section that includes a mirror demodulating TWTS, so that the spatial and temporal coherence of the pulses is substantially identical to the input beam.
    Type: Application
    Filed: December 2, 2016
    Publication date: June 8, 2017
    Inventors: Chunguang Jing, Jiaqi Qiu, Sergey V. Baryshev, June W. Lau, Yimei Zhu
  • Publication number: 20160293377
    Abstract: An ElectroMagnetic-Mechanical Pulser can generate electron pulses at rates up to 50 GHz, energies up to 1 MeV, duty cycles up to 10%, and pulse widths between 100 fs and 10 ps. A modulating Transverse Deflecting Cavity (“TDC”) imposes a transverse modulation on a continuous electron beam, which is then chopped into pulses by an adjustable Chopping Collimating Aperture. Pulse dispersion due to the modulating TDC is minimized by a suppressing section comprising a plurality of additional TDC's and/or magnetic quadrupoles. In embodiments the suppression section includes a magnetic quadrupole and a TDC followed by four additional magnetic quadrupoles. The TDC's can be single-cell or triple-cell. A fundamental frequency of at least one TDC can be tuned by literally or virtually adjusting its volume. TDC's can be filled with vacuum, air, or a dielectric or ferroelectric material. Embodiments are easily switchable between passive, continuous mode and active pulsed mode.
    Type: Application
    Filed: April 6, 2016
    Publication date: October 6, 2016
    Inventors: Sergey V. Baryshev, Chunguang Jing, Jiaqi Qiu, Sergey Antipov, Gwanghui Ha, June W. Lau, Yimei Zhu