Patents by Inventor Jia-Xiang Wang

Jia-Xiang Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6189482
    Abstract: The present invention provides systems, methods and apparatus for depositing titanium films at rates up to 200 Å/minute on semiconductor substrates from a titanium tetrachloride source. In accordance with an embodiment of the invention, a ceramic heater assembly with an integrated RF plane for bottom powered RF capability allows PECVD deposition at a temperature of at least 400° C. for more efficient plasma treatment. A thermal choke isolates the heater from its support shaft, reducing the thermal gradient across the heater to reduce the risk of breakage and improving temperature uniformity of the heater. A deposition system incorporates a flow restrictor ring and other features that allow a 15 liters/minute flow rate through the chamber with minimal backside deposition and minimized deposition on the bottom of the chamber, thereby reducing the frequency of chamber cleanings, and reducing clean time and seasoning. Deposition and clean processes are also further embodiments of the present invention.
    Type: Grant
    Filed: February 12, 1997
    Date of Patent: February 20, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Jun Zhao, Lee Luo, Xiao Liang Jin, Jia-Xiang Wang, Talex Sajoto, Stefan Wolff, Leonid Selyutin, Ashok Sinha
  • Patent number: 6051286
    Abstract: The present invention provides systems, methods and apparatus for depositing titanium films at rates up to 200 .ANG./minute on semiconductor substrates from a titanium tetrachloride source. In accordance with an embodiment of the invention, a ceramic heater assembly with an integrated RF plane for bottom powered RF capability allows PECVD deposition at a temperature of at least 400.degree. C. for more efficient plasma treatment. A thermal choke isolates the heater from its support shaft, reducing the thermal gradient across the heater to reduce the risk of breakage and improving temperature uniformity of the heater. A deposition system incorporates a flow restrictor ring and other features that allow a 15 liters/minute flow rate through the chamber with minimal backside deposition and minimized deposition on the bottom of the chamber, thereby reducing the frequency of chamber cleanings, and reducing clean time and seasoning. Deposition and clean processes are also further embodiments of the present invention.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: April 18, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Jun Zhao, Lee Luo, Xiao Liang Jin, Jia-Xiang Wang, Stefan Wolff, Talex Sajoto
  • Patent number: 5983906
    Abstract: The present invention provides systems, methods and apparatus for depositing titanium films at rates up to 200 .ANG./minute on semiconductor substrates from a titanium tetrachloride source. In accordance with an embodiment of the invention, a ceramic heater assembly with an integrated RF plane for bottom powered RF capability allows PECVD deposition at a temperature of at least 400.degree. C. for more efficient plasma treatment. A thermal choke isolates the heater from its support shaft, reducing the thermal gradient across the heater to reduce the risk of breakage and improving temperature uniformity of the heater. A deposition system incorporates a flow restrictor ring and other features that allow a 15 liters/minute flow rate through the chamber with minimal backside deposition and minimized deposition on the bottom of the chamber, thereby reducing the frequency of chamber cleanings, and reducing clean time and seasoning. Deposition and clean processes are also further embodiments of the present invention.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: November 16, 1999
    Assignee: Applied Materials, Inc.
    Inventors: Jun Zhao, Lee Luo, Jia-Xiang Wang, Xiao Liang Jin, Stefan Wolff, Talex Sajoto, Mei Chang, Paul Frederick Smith