Patents by Inventor Jiaxin YAO

Jiaxin YAO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250133785
    Abstract: The present disclosure provides a stacked nanosheet gate-all-around device with an air spacer and a manufacturing method. The device includes: a substrate, where a first dielectric layer is on the substrate, a gap array is in the first dielectric layer, the gap array includes multiple gap units, and each gap unit is in a fin shape above the substrate; a nanosheet stacking portion above the gap unit, including a stack formed by multiple nanosheets, and the stack formed by the nanosheets constitutes multiple conductive channels; a gate-all-around surrounding the nanosheet stacking portion; and a source/drain region on two opposite sides of the nanosheet stacking portion, where an empty spacer is between the source/drain region and the gate-all-around. An interior of the gap array and an interior of the empty spacer are filled with at least one of air, a reducing gas, or an inert gas.
    Type: Application
    Filed: October 4, 2024
    Publication date: April 24, 2025
    Inventors: Qingzhu ZHANG, Lianlian LI, Anyan DU, Huaxiang YIN, Lei CAO, Jiaxin YAO, Zhaohao ZHANG, Qingkun LI, Guanqiao SANG
  • Publication number: 20250133773
    Abstract: The present disclosure relates to a stacked nanosheet gate-all-around device with an air spacer and a method of manufacturing a stacked nanosheet gate-all-around device with an air spacer. The stacked nanosheet gate-all-around device with the air spacer includes: a substrate with a shallow trench isolation structure on a surface of the substrate; a nanosheet stacking portion provided above the substrate, where the nanosheet stacking portion includes a stack formed by a plurality of nanosheets, and the stack formed by the nanosheets constitutes a plurality of conductive channels; a gate-all-around surrounding the nanosheet stacking portion; and a source/drain region located on two opposite sides of the nanosheet stacking portion, where an empty spacer is provided between the source/drain region and the gate-all-around, where an interior of the empty spacer is filled with at least one of air, a reducing gas, or an inert gas.
    Type: Application
    Filed: October 15, 2024
    Publication date: April 24, 2025
    Inventors: Qingzhu ZHANG, Lianlian LI, Anyan DU, Huaxiang YIN, Lei CAO, Jiaxin YAO, Zhaohao ZHANG, Qingkun LI, Guanqiao SANG
  • Publication number: 20250069653
    Abstract: The computing-in-memory circuit includes: an SRAM memory cell array including at least one memory cell connected between a first bit line and a second bit line, the memory cell includes a first inverter and a second inverter cross-coupled with each other, and the first inverter and the second inverter have an asymmetric configuration with respect to each other; a control circuit configured to: receive a first input signal, a second input signal and an operation mode control signal, process the first input signal and the second input signal according to operation mode control signal, so as to obtain a processed first input signal and a processed second input signal, and apply the processed first input signal and the processed second input signal to the first bit line and the second bit line, respectively; and a readout circuit configured to read out data stored in memory cell from the memory cell.
    Type: Application
    Filed: November 14, 2024
    Publication date: February 27, 2025
    Inventors: Huaxiang YIN, Xuexiang ZHANG, Jiaxin YAO
  • Publication number: 20250031417
    Abstract: A semiconductor device and a method for manufacturing the same. The method comprise: forming a first field-effect transistor (FET) disposed on a substrate and a first isolation layer disposed on the first FET; forming a first through hole in the first isolation layer, where a metal layer is deposited in the first through hole and is electrically connected to the first FET; forming a second isolation layer, which is disposed on the first isolation layer and the metal layer; and forming a second FET which is disposed on the second isolation layer, where a second through hole is disposed in the second FET and the second isolation layer, a metal material filled in the second through hole serves as a first contact plug, and the first contact plug is electrically connected to the metal layer. The metal layer serves as a power distribution network for both FETs.
    Type: Application
    Filed: December 18, 2023
    Publication date: January 23, 2025
    Inventors: Huaxiang YIN, Qingzhu ZHANG, Yadong ZHANG, Jiaxin YAO
  • Publication number: 20240379794
    Abstract: Provided are a three-dimensional stack field-effect transistor (3DS FET) and a method of manufacturing the same. According to embodiments, the 3DS FET includes: a lower active region arranged on a substrate, an upper active region above the lower active region and a gate stack. The lower active region includes: a fin extending in a first direction on the substrate, and lower source/drain portions at two opposite ends of the fin in the first direction, respectively. The upper active region includes: one or more nanosheets, a lowest nanosheet is spaced apart from the fin in a vertical direction relative to the substrate, and upper source/drain portions at two opposite ends of the one or more nanosheets in the first direction, respectively. The gate stack extends in a second direction intersecting with the first direction so as to intersect with the fin and the one or more nanosheets.
    Type: Application
    Filed: September 7, 2023
    Publication date: November 14, 2024
    Inventors: Huaxiang YIN, Peng ZHAO, Zhenhua WU, Jiaxin YAO
  • Patent number: 11594608
    Abstract: A gate-all-around nanowire device and a method for forming the gate-all-around nanowire device. A first fin and a dielectric layer on the first fin are formed on a substrate. The first fin includes the at least one first epitaxial layer and the at least one second epitaxial layer that are alternately stacked. The dielectric layer exposes a channel region of the first fin. A doping concentration at a lateral surface of the channel region and a doping concentration at a central region of the channel region are different from each other in the at least one second epitaxial layer. After the at least one first epitaxial layer is removed from the channel region, the at least one second epitaxial layer in the channel region serves as at least one nanowire. A gate surrounding the at least one nanowire is formed.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: February 28, 2023
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huaxiang Yin, Jiaxin Yao, Qingzhu Zhang, Zhaohao Zhang, Tianchun Ye
  • Patent number: 11411091
    Abstract: A method for manufacturing a stacked gate-all-around nano-sheet CMOS device, including: providing a substrate with a fin structure, where a channel layer for an NMOS is a sacrificial layer for a PMOS, a channel layer for the PMOS is a sacrificial layer for the NMOS; and mobility of holes in the second material is greater than mobility of holes in the first material; forming a dummy gate stack extending across the fin structure; forming source-or-drain regions in the fin structure at two sides of the dummy gate stack; removing the dummy gate stack and the sacrificial layers covered by the dummy gate stack, to expose a surface of a part of the channel layer that is located between the source-or-drain regions, where a nano-sheet array is formed by the channel layer with the exposed surface; and forming a gate stack structure surrounding each nano sheet in the nano-sheet array.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: August 9, 2022
    Inventors: Huaxiang Yin, Tianchun Ye, Qingzhu Zhang, Jiaxin Yao
  • Publication number: 20220115513
    Abstract: A method for manufacturing a stacked gate-all-around nano-sheet CMOS device, including: providing a substrate with a fin structure, where a channel layer for an NMOS is a sacrificial layer for a PMOS, a channel layer for the PMOS is a sacrificial layer for the NMOS; and mobility of holes in the second material is greater than mobility of holes in the first material; forming a dummy gate stack extending across the fin structure; forming source-or-drain regions in the fin structure at two sides of the dummy gate stack; removing the dummy gate stack and the sacrificial layers covered by the dummy gate stack, to expose a surface of a part of the channel layer that is located between the source-or-drain regions, where a nano-sheet array is formed by the channel layer with the exposed surface; and forming a gate stack structure surrounding each nano sheet in the nano-sheet array.
    Type: Application
    Filed: October 30, 2019
    Publication date: April 14, 2022
    Inventors: Huaxiang YIN, Tianchun YE, Qingzhu ZHANG, Jiaxin YAO
  • Patent number: 11193333
    Abstract: The present invention provides an automatic jet breaking tool for solid fluidization exploitation of natural gas hydrate, which mainly includes an upper joint, an outer cylinder, an inner sliding sleeve, a lockup sliding sleeve, a thrust bearing, a spring, a jet joint, a telescopic jet sprinkler, a plug block and an extrusion seal ring. The present invention mainly adopts the principle of throttling control pressure to control the position of the inner sliding sleeve by controlling a flow rate of a drilling fluid, so as to turn on and turn off the jet breaking tool. The application of the present invention can realize automatic jet breaking of solid fluidization exploitation of the natural gas hydrate, reduce procedures of a round trip operation, and effectively improve the efficiency and safety of the exploitation operation of the natural gas hydrate.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: December 7, 2021
    Assignees: Southwest Petroleum University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang)
    Inventors: Yang Tang, Shunxiao Huang, Guorong Wang, Qingyou Liu, Shouwei Zhou, Xushen Li, Lin Zhong, Qingping Li, Yufa He, Zhong Li, Yanjun Li, Hexing Liu, Jianglin Zhu, Jiaxin Yao, Jiang Lu, Leizhen Wang
  • Publication number: 20210140243
    Abstract: The present invention provides an automatic jet breaking tool for solid fluidization exploitation of natural gas hydrate, which mainly includes an upper joint, an outer cylinder, an inner sliding sleeve, a lockup sliding sleeve, a thrust bearing, a spring, a jet joint, a telescopic jet sprinkler, a plug block and an extrusion seal ring. The present invention mainly adopts the principle of throttling control pressure to control the position of the inner sliding sleeve by controlling a flow rate of a drilling fluid, so as to turn on and turn off the jet breaking tool. The application of the present invention can realize automatic jet breaking of solid fluidization exploitation of the natural gas hydrate, reduce procedures of a round trip operation, and effectively improve the efficiency and safety of the exploitation operation of the natural gas hydrate.
    Type: Application
    Filed: October 26, 2020
    Publication date: May 13, 2021
    Inventors: Yang TANG, Shunxiao HUANG, Guorong WANG, Qingyou LIU, Shouwei ZHOU, Xushen Li, Lin ZHONG, Qingping Li, Yufa HE, Zhong Li, Yanjun Li, Hexing LIU, Jianglin ZHU, Jiaxin YAO, Jiang LU, Leizhen WANG
  • Publication number: 20200335596
    Abstract: A gate-all-around nanowire device and a method for forming the gate-all-around nanowire device. A first fin and a dielectric layer on the first fin are formed on a substrate. The first fin includes the at least one first epitaxial layer and the at least one second epitaxial layer that are alternately stacked. The dielectric layer exposes a channel region of the first fin. A doping concentration at a lateral surface of the channel region and a doping concentration at a central region of the channel region are different from each other in the at least one second epitaxial layer. After the at least one first epitaxial layer is removed from the channel region, the at least one second epitaxial layer in the channel region serves as at least one nanowire. A gate surrounding the at least one nanowire is formed.
    Type: Application
    Filed: September 5, 2019
    Publication date: October 22, 2020
    Inventors: Huaxiang YIN, Jiaxin YAO, Qingzhu ZHANG, Zhaohao ZHANG, Tianchun YE