Patents by Inventor Jiaxiong Wang

Jiaxiong Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8092667
    Abstract: An electrochemical deposition method to form uniform and continuous Group IIIA material rich thin films with repeatability is provided. Such thin films are used in fabrication of semiconductor and electronic devices such as thin film solar cells. In one embodiment, the Group IIIA material rich thin film is deposited on an interlayer that includes 20-90 molar percent of at least one of In and Ga and at least 10 molar percent of an additive material including one of Cu, Se, Te, Ag and S. The thickness of the interlayer is adapted to be less than or equal to about 20% of the thickness of the Group IIIA material rich thin film.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: January 10, 2012
    Assignee: SoloPower, Inc.
    Inventors: Serdar Aksu, Jiaxiong Wang, Bulent M. Basol
  • Patent number: 8066865
    Abstract: An electrochemical co-deposition method and solution to plate uniform, defect free and smooth (In,Ga)—Se films with repeatability and controllable molar ratios of (In,Ga) to Se are provided. Such layers are used in fabrication of semiconductor and electronic devices such as thin film solar cells. In one embodiment, the present invention provides an alkaline electrodeposition solution that includes an In salt, a Se acid or oxide, a tartrate salt as complexing agent for the In species, and a solvent to electrodeposit an In—Se film possessing sub-micron thickness on a conductive surface.
    Type: Grant
    Filed: May 19, 2008
    Date of Patent: November 29, 2011
    Assignee: SoloPower, Inc.
    Inventors: Jiaxiong Wang, Serdar Aksu, Bulent M. Basol
  • Publication number: 20110256656
    Abstract: A chemical bath deposition method and a system are presented to prepare different thin films on continuous flexible substrates in roll-to-roll processes. In particular, they are useful to deposit CdS or ZnS buffer layers in manufacture of thin film solar cells. This method and the deposition system deposit thin films onto vertically travelling continuous flexible workpieces delivered by a roll-to-roll system. The thin films are deposited with continuously spraying the reaction solutions from their freshly mixed styles to gradually aged forms until the designed thickness is obtained. The substrates and the solutions are heated to a reaction temperature. During the deposition processes, the front surfaces of the flexible substrates are totally covered with the sprayed solutions but the substrate backsides are remained dry. The reaction ambience inside the reactor can be isolated from the outside atmosphere. The apparatus is designed to generate a minimum amount of waste solutions for chemical treatments.
    Type: Application
    Filed: June 7, 2011
    Publication date: October 20, 2011
    Inventor: Jiaxiong Wang
  • Publication number: 20110226630
    Abstract: An electrochemical deposition method and electrolyte to plate uniform, defect free and smooth gallium films are provided. In a preferred embodiment, the electrolyte may include a solvent that comprises water and at least one monohydroxyl alcohol, a gallium salt, and an acid to control the solution pH and conductivity. The method electrodeposits a gallium film possessing sub-micron thickness on a conductive surface. Such gallium layers are used in fabrication of semiconductor and electronic devices such as thin film solar cells.
    Type: Application
    Filed: May 31, 2011
    Publication date: September 22, 2011
    Inventors: Jiaxiong Wang, Serdar Aksu, Bulent M. Basol
  • Publication number: 20110180414
    Abstract: Described is an electrodeposition solution for deposition of a Group IB-IIIA thin film on a conductive surface. In a preferred embodiment, the electrodeposition solution comprises a solvent; a Group IB material source that dissolves in the solvent and provides a Group IB material; a Group IIIA material source that dissolves in the solvent and provides a Group IIIA material; and a blend of at least two complexing agents, one of the at least two complexing agent forming a complex with the Group IB material and the other one of the at least two complexing agent forming a complex with the Group IIIA material; wherein the pH of the solution is at least 7.
    Type: Application
    Filed: February 22, 2011
    Publication date: July 28, 2011
    Inventors: Serdar Aksu, Jiaxiong Wang, Bulent M. Basol
  • Patent number: 7951280
    Abstract: An electrochemical deposition method and electrolyte to plate uniform, defect free and smooth gallium films are provided. In a preferred embodiment, the electrolyte may include a solvent that comprises water and at least one monohydroxyl alcohol, a gallium salt, and an acid to control the solution pH and conductivity. The method electrodeposits a gallium film possessing sub-micron thickness on a conductive surface. Such gallium layers are used in fabrication of semiconductor and electronic devices such as thin film solar cells.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: May 31, 2011
    Assignee: SoloPower, Inc.
    Inventors: Jiaxiong Wang, Serdar Aksu, Bulent M. Basol
  • Patent number: 7892413
    Abstract: Described is an electrodeposition solution for deposition of a Group IB-IIIA thin film on a conductive surface. In a preferred embodiment, the electrodeposition solution comprises a solvent; a Group IB material source that dissolves in the solvent and provides a Group IB material; a Group IIIA material source that dissolves in the solvent and provides a Group IIIA material; and a blend of at least two complexing agents, one of the at least two complexing agent forming a complex with the Group IB material and the other one of the at least two complexing agent forming a complex with the Group IIIA material; wherein the pH of the solution is at least 7.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: February 22, 2011
    Assignee: SoloPower, Inc.
    Inventors: Serdar Aksu, Jiaxiong Wang, Bulent M. Basol
  • Publication number: 20110005586
    Abstract: A method of forming a Group IBIIIAVIA absorber layer on a base for manufacturing a solar cell is provided. The method, in one embodiment, includes forming a precursor stack by electroplating a first metallic layer on the base. The first metallic layer includes at least one of copper, indium and gallium. A first selenium layer is deposited on the first metallic layer, and an interlayer is electrodeposited on the selenium layer. The interlayer includes one of gold and silver. A second metallic layer is electrodeposited on the interlayer, the second metallic layer comprising at least one of copper indium and gallium. The interlayer inhibits dissolution of selenium during the electrodeposition of the second metallic layer. Such prepared precursor stack is reacted at a temperature range of 300-600° C. to form the Group IBIIIAVIA absorber layer.
    Type: Application
    Filed: July 10, 2009
    Publication date: January 13, 2011
    Applicant: SoloPower, Inc.
    Inventors: Serdar AKSU, Jiaxiong WANG, Bulent M. BASOL
  • Publication number: 20100200050
    Abstract: The present invention provides a method and precursor structure to form a Group IBIIIAIVA solar cell absorber layer. The method includes forming a Group IBIIIAVIA compound layer on a base by forming a precursor layer on the base through electrodepositing three different films, and then reacting the precursor layer with selenium to form the Group IBIIIAVIA compound layer on the base. The three films, described by the precursor layer, include in one embodiment a first alloy film comprising copper, indium and gallium, a second alloy film comprising copper and selenium formed on the first alloy film; and a selenium film formed on the second alloy film.
    Type: Application
    Filed: December 18, 2009
    Publication date: August 12, 2010
    Applicant: SoloPower, Inc.
    Inventors: Serdar Aksu, Mustafa Pinarbasi, Jiaxiong Wang
  • Publication number: 20100116678
    Abstract: An electrochemical deposition method and electrolyte to plate uniform, defect free and smooth gallium films are provided. In a preferred embodiment, the electrolyte may include a solvent that comprises water and at least one monohydroxyl alcohol, a gallium salt, and an acid to control the solution pH and conductivity. The method electrodeposits a gallium film possessing sub-micron thickness on a conductive surface. Such gallium layers are used in fabrication of semiconductor and electronic devices such as thin film solar cells.
    Type: Application
    Filed: November 7, 2008
    Publication date: May 13, 2010
    Inventors: Jiaxiong Wang, Serdar Aksu, Bulent M. Basol
  • Publication number: 20090315148
    Abstract: An electrochemical deposition method to form uniform and continuous Group IIIA material rich thin films with repeatability is provided. Such thin films are used in fabrication of semiconductor and electronic devices such as thin film solar cells. In one embodiment, the Group IIIA material rich thin film is deposited on an interlayer that includes 20-90 molar percent of at least one of In and Ga and at least 10 molar percent of an additive material including one of Cu, Se, Te, Ag and S. The thickness of the interlayer is adapted to be less than or equal to about 20% of the thickness of the Group IIIA material rich thin film.
    Type: Application
    Filed: June 20, 2008
    Publication date: December 24, 2009
    Inventors: Serdar Aksu, Jiaxiong Wang, Bulent M. Basol
  • Publication number: 20090283414
    Abstract: An electrochemical co-deposition method and solution to plate uniform, defect free and smooth (In,Ga)—Se films with repeatability and controllable molar ratios of (In,Ga) to Se are provided. Such layers are used in fabrication of semiconductor and electronic devices such as thin film solar cells. In one embodiment, the present invention provides an alkaline electrodeposition solution that includes an In salt, a Se acid or oxide, a tartrate salt as complexing agent for the In species, and a solvent to electrodeposit an In—Se film possessing sub-micron thickness on a conductive surface.
    Type: Application
    Filed: May 19, 2008
    Publication date: November 19, 2009
    Inventors: Jiaxiong Wang, Serdar Aksu, Bulent M. Basol
  • Publication number: 20090283415
    Abstract: Described is an electrodeposition solution for deposition of a Group IB-IIIA thin film on a conductive surface. In a preferred embodiment, the electrodeposition solution comprises a solvent; a Group IB material source that dissolves in the solvent and provides a Group IB material; a Group IIIA material source that dissolves in the solvent and provides a Group IIIA material; and a blend of at least two complexing agents, one of the at least two complexing agent forming a complex with the Group IB material and the other one of the at least two complexing agent forming a complex with the Group IIIA material; wherein the pH of the solution is at least 7.
    Type: Application
    Filed: February 13, 2009
    Publication date: November 19, 2009
    Inventors: Serdar Aksu, Jiaxiong Wang, Bulent M. Basol
  • Publication number: 20090188808
    Abstract: Indium (In) electroplating solutions which are used to deposit compositionally pure, uniform, substantially defect free and smooth In films with near 100% plating efficiency and repeatability. In one embodiment the plating solution includes an In source, citric acid and its conjugate pair salt and a solvent. At a pH value of below 4.0, sub-micron thick In layers with close to 100% purity at close to 100% plating efficiency are produced. Such In layers are used in fabrication of electronic devices such as thin film solar cells.
    Type: Application
    Filed: January 29, 2008
    Publication date: July 30, 2009
    Inventors: Jiaxiong Wang, Serdar Aksu, Bulent M. Basol
  • Publication number: 20090173634
    Abstract: The present invention relates to gallium (Ga) electroplating methods and chemistries to deposit uniform, defect free and smooth Ga films with high plating efficiency and repeatability. Such layers may be used in fabrication of electronic devices such as thin film solar cells. In one embodiment, the present invention provides a solution for application on a conductor that includes a Ga salt, a complexing agent, a solvent, and a Ga-film having submicron thickness is facilitated upon electrodeposition of the solution on the conductor. The solution may further include one or both of a Cu salt and an In salt.
    Type: Application
    Filed: March 16, 2009
    Publication date: July 9, 2009
    Applicant: SoloPower, Inc.
    Inventors: Serdar Aksu, Jiaxiong Wang, Bulent M. Basol
  • Patent number: 7507321
    Abstract: The present invention relates to gallium (Ga) electroplating methods and chemistries to deposit uniform, defect free and smooth Ga films with high plating efficiency and repeatability. Such layers may be used in fabrication of electronic devices such as thin film solar cells. In one embodiment, the present invention provides a solution for application on a conductor that includes a Ga salt, a complexing agent, a solvent, and a Ga-film having submicron thickness is facilitated upon electrodeposition of the solution on the conductor. The solution may further include one or both of a Cu salt and an In salt.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: March 24, 2009
    Assignee: Solopower, Inc.
    Inventors: Serdar Aksu, Jiaxiong Wang, Bulent M. Basol
  • Publication number: 20070272558
    Abstract: The present invention relates to gallium (Ga) electroplating methods and chemistries to deposit uniform, defect free and smooth Ga films with high plating efficiency and repeatability. Such layers may be used in fabrication of electronic devices such as thin film solar cells. In one embodiment, the present invention provides a solution for application on a conductor that includes a Ga salt, a complexing agent, a solvent, and a Ga-film having submicron thickness is facilitated upon electrodeposition of the solution on the conductor. The solution may further include one or both of a Cu salt and an In salt.
    Type: Application
    Filed: September 27, 2006
    Publication date: November 29, 2007
    Inventors: Serdar Aksu, Jiaxiong Wang, Bulent Basol