Patents by Inventor Jie-Fan Lai

Jie-Fan Lai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11133813
    Abstract: An analog-to-digital converter (ADC) device includes an ADC circuitry and a digital slope ADC circuitry. The ADC circuitry is configured to generate first bits and a first voltage according to an input signal. The digital slope ADC circuitry is configured to generate a second voltage at a node according to the first voltage and to gradually adjust the second voltage to generate second bits. After the second bits are generated, the digital slope ADC circuitry is further configured to perform a noise shaping function according to a first residual signal of the node.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: September 28, 2021
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventors: Jie-Fan Lai, Shih-Hsiung Huang, Yu-Chang Chen, Chih-Lung Chen, Tzu-Hao Hung, Tai-Cheng Lee
  • Publication number: 20210099183
    Abstract: An analog-to-digital converter (ADC) device includes an ADC circuitry and a digital slope ADC circuitry. The ADC circuitry is configured to generate first bits and a first voltage according to an input signal. The digital slope ADC circuitry is configured to generate a second voltage at a node according to the first voltage and to gradually adjust the second voltage to generate second bits. After the second bits are generated, the digital slope ADC circuitry is further configured to perform a noise shaping function according to a first residual signal of the node.
    Type: Application
    Filed: April 14, 2020
    Publication date: April 1, 2021
    Inventors: JIE-FAN LAI, SHIH-HSIUNG HUANG, YU-CHANG CHEN, CHIH-LUNG CHEN, TZU-HAO HUNG, TAI-CHENG LEE
  • Patent number: 10778244
    Abstract: A correction method and a correction circuit for a sigma-delta modulator (SDM) are provided. The SDM includes a loop filter, a quantizer, and a digital-to-analog converter (DAC). The correction method includes the following steps: controlling the DAC not to receive the output of the quantizer; controlling the SDM to stop receiving signals; inputting a test signal to the DAC; converting the output of the loop filter to a digital signal; comparing the digital signal with a preset value; and adjusting the loop filter according to the result of comparing the digital signal and the preset value.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: September 15, 2020
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventors: Chih-Lung Chen, Jie-Fan Lai, Yu-Chang Chen, Shih-Hsiung Huang
  • Patent number: 10742230
    Abstract: A correction method and a correction circuit for a sigma-delta modulator (SDM) are disclosed. The SDM includes a loop filter, a quantizer, and a digital-to-analog converter (DAC), and the loop filter includes a resonator. The correction circuit includes a memory and a control circuit. The memory stores multiple program instructions. The control circuit executes the program instructions to correct the SDM. The correction procedure of the SDM includes the following steps: inputting a test signal to the SDM; obtaining a signal characteristic value of an output signal of the SDM; and adjusting the resonator according to the signal characteristic value.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: August 11, 2020
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventors: Chih-Lung Chen, Jie-Fan Lai, Yu-Chang Chen, Shih-Hsiung Huang
  • Patent number: 10727856
    Abstract: This invention discloses a successive approximation register analog-to-digital converter (SAR ADC) and a control circuit thereof. The SAR ADC includes a comparator, a switched-capacitor digital-to-analog converter (DAC), and a control circuit. The switched-capacitor DAC includes a capacitor and a driving circuit that is electrically connected to the capacitor. The driving circuit comprises a P-type MOSFET and an N-type MOSFET, and the gates of the two MOSFETs are not electrically connected. The P-type MOSFET is controlled by a first control signal, and the N-type MOSFET is controlled by a second control signal. The control circuit controls the voltage at one end of the capacitor to switch from a high voltage level to a low voltage level by controlling the rising edge of the first control signal to lead the rising edge of the second control signal.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: July 28, 2020
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventors: Cheng-Hui Wu, Jie-Fan Lai, Shih-Hsiung Huang
  • Publication number: 20200127677
    Abstract: A correction method and a correction circuit for a sigma-delta modulator (SDM) are provided. The SDM includes a loop filter, a quantizer, and a digital-to-analog converter (DAC). The correction method includes: generating a test signal for a frequency to be tested; inputting the test signal to a feedforward circuit that includes at least one adjustable impedance circuit, the test signal being inputted to the SDM through the impedance circuit; calculating an output signal of the SDM to obtain a value of a signal transfer function (STF) of the SDM at the frequency to be tested; and adjusting the impedance circuit.
    Type: Application
    Filed: July 23, 2019
    Publication date: April 23, 2020
    Inventors: CHIH-LUNG CHEN, JIE-FAN LAI, YU-CHANG CHEN, SHIH-HSIUNG HUANG
  • Patent number: 10630311
    Abstract: A correction method and a correction circuit for a sigma-delta modulator (SDM) are provided. The SDM includes a loop filter, a quantizer, and a digital-to-analog converter (DAC). The correction method includes: generating a test signal for a frequency to be tested; inputting the test signal to a feedforward circuit that includes at least one adjustable impedance circuit, the test signal being inputted to the SDM through the impedance circuit; calculating an output signal of the SDM to obtain a value of a signal transfer function (STF) of the SDM at the frequency to be tested; and adjusting the impedance circuit.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: April 21, 2020
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventors: Chih-Lung Chen, Jie-Fan Lai, Yu-Chang Chen, Shih-Hsiung Huang
  • Publication number: 20200106456
    Abstract: A correction method and a correction circuit for a sigma-delta modulator (SDM) are provided. The SDM includes a loop filter, a quantizer, and a digital-to-analog converter (DAC). The correction method includes the following steps: controlling the DAC not to receive the output of the quantizer; controlling the SDM to stop receiving signals; inputting a test signal to the DAC; converting the output of the loop filter to a digital signal; comparing the digital signal with a preset value; and adjusting the loop filter according to the result of comparing the digital signal and the preset value.
    Type: Application
    Filed: July 23, 2019
    Publication date: April 2, 2020
    Inventors: CHIH-LUNG CHEN, JIE-FAN LAI, YU-CHANG CHEN, SHIH-HSIUNG HUANG
  • Publication number: 20200091929
    Abstract: A correction method and a correction circuit for a sigma-delta modulator (SDM) are disclosed. The SDM includes a loop filter, a quantizer, and a digital-to-analog converter (DAC), and the loop filter includes a resonator. The correction circuit includes a memory and a control circuit. The memory stores multiple program instructions. The control circuit executes the program instructions to correct the SDM. The correction procedure of the SDM includes the following steps: inputting a test signal to the SDM; obtaining a signal characteristic value of an output signal of the SDM; and adjusting the resonator according to the signal characteristic value.
    Type: Application
    Filed: July 23, 2019
    Publication date: March 19, 2020
    Inventors: CHIH-LUNG CHEN, JIE-FAN LAI, YU-CHANG CHEN, SHIH-HSIUNG HUANG
  • Publication number: 20200091926
    Abstract: This invention discloses a successive approximation register analog-to-digital converter (SAR ADC) and a control circuit thereof. The SAR ADC includes a comparator, a switched-capacitor digital-to-analog converter (DAC), and a control circuit. The switched-capacitor DAC includes a capacitor and a driving circuit that is electrically connected to the capacitor. The driving circuit comprises a P-type MOSFET and an N-type MOSFET, and the gates of the two MOSFETs are not electrically connected. The P-type MOSFET is controlled by a first control signal, and the N-type MOSFET is controlled by a second control signal. The control circuit controls the voltage at one end of the capacitor to switch from a high voltage level to a low voltage level by controlling the rising edge of the first control signal to lead the rising edge of the second control signal.
    Type: Application
    Filed: July 23, 2019
    Publication date: March 19, 2020
    Inventors: CHENG-HUI WU, JIE-FAN LAI, SHIH-HSIUNG HUANG
  • Patent number: 10536160
    Abstract: A pipelined analog-to-digital converter includes: a first switched capacitor network, a first digital-to-analog converter, a second switched capacitor network, a second digital-to-analog converter, and an operational amplifier. The outputs from the first switched capacitor network and the first digital-to-analog converter form a first subtraction signal. The outputs from the second switched capacitor network and the second digital-to-analog converter form a second subtraction signal. The operational amplifier is arranged to operably generate an output signal based on the first subtraction signal or the second subtraction signal, and to operably switch coupling relationship of multiple candidate capacitors of the operational amplifier based on the magnitude of an input signal of a prior stage circuit, so that only a portion of the multiple candidate capacitors could be participated in the generation of the output signal at a time.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: January 14, 2020
    Assignee: REALTEK SEMICONDUCTOR CORP.
    Inventors: Chih-Lung Chen, Shih-Hsiung Huang, Chien-Ming Wu, Jie-Fan Lai
  • Patent number: 10530381
    Abstract: An operational amplifier includes: a first gain stage for generating a second signal based on a first signal transmitted from a prior stage circuit; a second gain stage for generating an output signal based on the second signal; multiple candidate capacitors; and a capacitor selection circuit for switching the coupling relationship of the multiple candidate capacitors based on the magnitude of an input signal of the prior stage circuit, so that only a portion of the multiple candidate capacitors could be coupled to the second gain stage at a time.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: January 7, 2020
    Assignee: REALTEK SEMICONDUCTOR CORP.
    Inventors: Jie-Fan Lai, Chih-Lung Chen, Shih-Hsiung Huang, Chien-Ming Wu
  • Patent number: 10498353
    Abstract: Disclosed is a successive approximation register (SAR) quantizer and a continuous-time sigma-delta modulator (CTSDM) using the SAR quantizer. The SAR quantizer is capable of generating M highly-significant bits as a digital output signal, and generating L lowly-significant bit(s) for the execution of noise shaping operation. Therefore, the SAR quantizer and the CTSDM can reduce the demand for the circuit area of a digital-to-analog converter and lower the delay of a critical path, so as to improve the performance and cut the cost.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: December 3, 2019
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventors: Bi-Ching Huang, Yu-Chang Chen, Chih-Lung Chen, Jie-Fan Lai
  • Patent number: 10432181
    Abstract: A data converter and an impedance matching control method are provided. The data converter includes a comparator, a capacitor array as well as a switch and impedance matching circuit. The comparator includes a first input terminal and a second input terminal. The capacitor array includes a plurality of capacitors, and a first end of each capacitor is coupled to the first input terminal or the second input terminal. The switch and impedance matching circuit is coupled to a second end of a target capacitor among the capacitors and configured to couple the second end to a first reference voltage or a second reference voltage according to a control signal and adjust an impedance according to an impedance adjusting signal, in which the impedance is the impedance of the switch and impedance matching circuit. The first reference voltage is different from the second reference voltage.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: October 1, 2019
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventors: Chih-Lung Chen, Sheng-Hsiung Lin, Jie-Fan Lai, Shih-Hsiung Huang
  • Patent number: 10425097
    Abstract: A sample-and-hold amplifier includes: a switched capacitor network for conducting a sample-and-hold operation on an input signal to generate a first signal; and an operational amplifier coupled with the switched capacitor network and including multiple candidate capacitors; wherein the operational amplifier is arranged to operably generate an output signal based on the first signal, and to operably switch coupling relationship of the multiple candidate capacitors based on the magnitude of the input signal, so that only a portion of the multiple candidate capacitors could be participated in the generation of the output signal at a time.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: September 24, 2019
    Assignee: REALTEK SEMICONDUCTOR CORP.
    Inventors: Shih-Hsiung Huang, Chih-Lung Chen, Jie-Fan Lai, Chien-Ming Wu
  • Publication number: 20190181880
    Abstract: Disclosed is a successive approximation register (SAR) quantizer and a continuous-time sigma-delta modulator (CTSDM) using the SAR quantizer. The SAR quantizer is capable of generating M highly-significant bits as a digital output signal, and generating L lowly-significant bit(s) for the execution of noise shaping operation. Therefore, the SAR quantizer and the CTSDM can reduce the demand for the circuit area of a digital-to-analog converter and lower the delay of a critical path, so as to improve the performance and cut the cost.
    Type: Application
    Filed: October 25, 2018
    Publication date: June 13, 2019
    Inventors: BI-CHING HUANG, YU-CHANG CHEN, CHIH-LUNG CHEN, JIE-FAN LAI
  • Patent number: 10284216
    Abstract: A calibration circuit and calibration method for a successive approximation register analog-to-digital converter (SAR ADC) are disclosed. The SAR ADC includes a comparator and generates a digital code. The calibration method includes the following steps: (a) creating a voltage difference between two inputs of the comparator, with the absolute value of the voltage difference being smaller than or equal to the absolute value of the voltage corresponding to the least significant bit (LSB) of the digital code; (b) updating a count value according to whether a timer of the SAR ADC issues a time-out signal, the timer issuing the time-out signal after a delay time has elapsed; (c) repeating steps (a) through (b) a predetermined number of times; (d) calculating a probability based on the predetermined number of times and the count value; and (e) adjusting the delay time according to the probability.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: May 7, 2019
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventors: Kuo-Sheng Chung, Shih-Hsiung Huang, Jie-Fan Lai
  • Publication number: 20190123755
    Abstract: An operational amplifier includes: a first gain stage for generating a second signal based on a first signal transmitted from a prior stage circuit; a second gain stage for generating an output signal based on the second signal; multiple candidate capacitors; and a capacitor selection circuit for switching the coupling relationship of the multiple candidate capacitors based on the magnitude of an input signal of the prior stage circuit, so that only a portion of the multiple candidate capacitors could be coupled to the second gain stage at a time.
    Type: Application
    Filed: October 12, 2018
    Publication date: April 25, 2019
    Applicant: Realtek Semiconductor Corp.
    Inventors: Jie-Fan LAI, Chih-Lung CHEN, Shih-Hsiung HUANG, Chien-Ming WU
  • Publication number: 20190123757
    Abstract: A pipelined analog-to-digital converter includes: a first switched capacitor network, a first digital-to-analog converter, a second switched capacitor network, a second digital-to-analog converter, and an operational amplifier. The outputs from the first switched capacitor network and the first digital-to-analog converter form a first subtraction signal. The outputs from the second switched capacitor network and the second digital-to-analog converter form a second subtraction signal. The operational amplifier is arranged to operably generate an output signal based on the first subtraction signal or the second subtraction signal, and to operably switch coupling relationship of multiple candidate capacitors of the operational amplifier based on the magnitude of an input signal of a prior stage circuit, so that only a portion of the multiple candidate capacitors could be participated in the generation of the output signal at a time.
    Type: Application
    Filed: October 12, 2018
    Publication date: April 25, 2019
    Applicant: Realtek Semiconductor Corp.
    Inventors: Chih-Lung CHEN, Shih-Hsiung HUANG, Chien-Ming WU, Jie-Fan LAI
  • Publication number: 20190123756
    Abstract: A sample-and-hold amplifier includes: a switched capacitor network for conducting a sample -and-hold operation on an input signal to generate a first signal; and an operational amplifier coupled with the switched capacitor network and including multiple candidate capacitors; wherein the operational amplifier is arranged to operably generate an output signal based on the first signal, and to operably switch coupling relationship of the multiple candidate capacitors based on the magnitude of the input signal, so that only a portion of the multiple candidate capacitors could be participated in the generation of the output signal at a time.
    Type: Application
    Filed: October 12, 2018
    Publication date: April 25, 2019
    Applicant: Realtek Semiconductor Corp.
    Inventors: Shih-Hsiung HUANG, Chih-Lung CHEN, Jie-Fan LAI, Chien-Ming WU