Patents by Inventor Jie-Hung Chiou

Jie-Hung Chiou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8105881
    Abstract: A method of fabricating a chip package structure includes the steps of providing a lead frame having a die pad, plural leads and at least one structure enhancement element. A chip is then disposed on the die pad and plural bonding wires are formed to electrically connect the chip to the leads. Then, an upper encapsulant and a first lower encapsulant are formed on an upper surface and a lower surface of the lead frame, respectively. The first lower encapsulant has plural concaves to expose the structure enhancement element. Finally, the structure enhancement element is etched with use of the first lower encapsulant as an etching mask until the die pad and one of the leads connected by the structure enhancement element, or two of the adjacent leads connected thereby are electrically insulated.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: January 31, 2012
    Assignee: ChipMOS Technologies (Bermuda) Ltd.
    Inventors: Jie-Hung Chiou, Yong-Chao Qiao, Yan-Yi Wu
  • Patent number: 8088650
    Abstract: A method of fabricating a chip package is provided. A thin metal plate having a first protrusion part, a second protrusion part and a plurality of third protrusion parts are provided. A chip is disposed on the thin metal plate, and a plurality of bonding wires for electrically connecting the chip to the second protrusion part and the second protrusion part to the third protrusion parts is formed. An upper encapsulant and a lower encapsulant are formed on the upper surface and the lower surface of the thin metal plate respectively. The lower encapsulant has a plurality of recesses for exposing a portion of the thin metal plate at locations where the first protrusion part, the second protrusion part and the third protrusion parts are connected to one another. Finally, the thin metal plate is etched by using the lower encapsulant as an etching mask.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: January 3, 2012
    Assignee: ChipMOS Technologies (Bermuda) Ltd.
    Inventors: Yong-Chao Qiao, Jie-Hung Chiou, Yan-Yi Wu
  • Patent number: 8039946
    Abstract: A chip package structure including a chip, a lead frame, first bonding wires and second bonding wires is provided. The chip has an active surface and chip bonding pads disposed thereon. The lead frame is fixed on the chip and the lead frame includes inner leads, at least one bus bar, an insulating layer and transfer bonding pads. The bus bar is located between the chip bonding pads and the inner leads. The insulating layer is disposed on the bus bar and the transfer bonding pads are disposed thereon. The inner leads and the bus bar are located above the active surface. The chip and the insulating layer are located respectively on two opposite surfaces of the bus bar. The first bonding wires respectively connect the chip bonding pads and the transfer bonding pads. The second bonding wires respectively connect the transfer bonding pads and the inner leads.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: October 18, 2011
    Assignees: ChipMOS Technologies (Shanghai) Ltd., ChipMOS Technologies (Bermuda) Ltd.
    Inventors: Hua Pan, Jie-Hung Chiou, Chih-Lung Huang
  • Patent number: 7741149
    Abstract: A chip package structure includes a chip, a lead frame, first and second bonding wires, an upper encapsulant, a first lower encapsulant, and a second lower encapsulant. The chip has an active surface, a back surface, and chip bonding pads disposed on the active surface. The lead frame having an upper surface and a lower surface includes a die pad, leads, and at least a bus bar. The back surface of the chip is adhered to the die pad. The leads surround the die pad. The bus bar is disposed between the die pad and the leads. The first bonding wires are connected to the chip bonding pads and the bus bar. The second bonding wires are connected to the bus bar and the leads. The upper encapsulant encapsulates the upper surface of the lead frame, the chip, the first bonding wires, and the second bonding wires.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: June 22, 2010
    Assignee: ChipMOS Technologies (Bermuda) Ltd.
    Inventors: Yong-Chao Qiao, Yan-Yi Wu, Jie-Hung Chiou
  • Publication number: 20100078801
    Abstract: A chip package structure including a chip, a lead frame, first bonding wires and second bonding wires is provided. The chip has an active surface and chip bonding pads disposed thereon. The lead frame is fixed on the chip and the lead frame includes inner leads, at least one bus bar, an insulating layer and transfer bonding pads. The bus bar is located between the chip bonding pads and the inner leads. The insulating layer is disposed on the bus bar and the transfer bonding pads are disposed thereon. The inner leads and the bus bar are located above the active surface. The chip and the insulating layer are located respectively on two opposite surfaces of the bus bar. The first bonding wires respectively connect the chip bonding pads and the transfer bonding pads. The second bonding wires respectively connect the transfer bonding pads and the inner leads.
    Type: Application
    Filed: December 3, 2009
    Publication date: April 1, 2010
    Applicant: CHIPMOS TECHNOLOGIES(SHANGHAI) LTD.
    Inventors: Hua Pan, Jie-Hung Chiou, Chih-Lung Huang
  • Publication number: 20100078802
    Abstract: A chip package structure including a chip, a lead frame, first bonding wires and second bonding wires is provided. The chip has an active surface and chip bonding pads disposed thereon. The lead frame is fixed on the chip and the lead frame includes inner leads, at least one bus bar, an insulating layer and transfer bonding pads. The bus bar is located between the chip bonding pads and the inner leads. The insulating layer is disposed on the bus bar and the transfer bonding pads are disposed thereon. The inner leads and the bus bar are located above the active surface. The chip and the insulating layer are located respectively on two opposite surfaces of the bus bar. The first bonding wires respectively connect the chip bonding pads and the transfer bonding pads. The second bonding wires respectively connect the transfer bonding pads and the inner leads.
    Type: Application
    Filed: December 3, 2009
    Publication date: April 1, 2010
    Applicant: CHIPMOS TECHNOLOGIES(SHANGHAI) LTD.
    Inventors: Hua Pan, Jie-Hung Chiou, Chih-Lung Huang
  • Patent number: 7683462
    Abstract: A method of fabricating a chip package structure includes the steps of providing a lead frame having a die pad, plural leads and at least one structure enhancement element. A chip is then disposed on the die pad and plural bonding wires are formed to electrically connect the chip to the leads. Then, an upper encapsulant and a first lower encapsulant are formed on an upper surface and a lower surface of the lead frame, respectively. The first lower encapsulant has plural concaves to expose the structure enhancement element. Finally, the structure enhancement element is etched with use of the first lower encapsulant as an etching mask until the die pad and one of the leads connected by the structure enhancement element, or two of the adjacent leads connected thereby are electrically insulated.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: March 23, 2010
    Assignee: ChipMOS Technologies (Bermuda) Ltd.
    Inventors: Jie-Hung Chiou, Yong-Chao Qiao, Yan-Yi Wu
  • Publication number: 20090280603
    Abstract: A method of fabricating a chip package is provided. A thin metal plate having a first protrusion part, a second protrusion part and a plurality of third protrusion parts are provided. A chip is disposed on the thin metal plate, and a plurality of bonding wires for electrically connecting the chip to the second protrusion part and the second protrusion part to the third protrusion parts is formed. An upper encapsulant and a lower encapsulant are formed on the upper surface and the lower surface of the thin metal plate respectively. The lower encapsulant has a plurality of recesses for exposing a portion of the thin metal plate at locations where the first protrusion part, the second protrusion part and the third protrusion parts are connected to one another. Finally, the thin metal plate is etched by using the lower encapsulant as an etching mask.
    Type: Application
    Filed: July 20, 2009
    Publication date: November 12, 2009
    Applicant: CHIPMOS TECHNOLOGIES (BERMUDA) LTD.
    Inventors: Yong-Chao Qiao, Jie-Hung Chiou, Yan-Yi Wu
  • Publication number: 20090197374
    Abstract: A chip package structure includes a chip, a lead frame, first and second bonding wires, an upper encapsulant, a first lower encapsulant, and a second lower encapsulant. The chip has an active surface, a back surface, and chip bonding pads disposed on the active surface. The lead frame having an upper surface and a lower surface includes a die pad, leads, and at least a bus bar. The back surface of the chip is adhered to the die pad. The leads surround the die pad. The bus bar is disposed between the die pad and the leads. The first bonding wires are connected to the chip bonding pads and the bus bar. The second bonding wires are connected to the bus bar and the leads. The upper encapsulant encapsulates the upper surface of the lead frame, the chip, the first bonding wires, and the second bonding wires.
    Type: Application
    Filed: April 15, 2009
    Publication date: August 6, 2009
    Applicant: CHIPMOS TECHNOLOGIES (BERMUDA) LTD.
    Inventors: Yong-Chao Qiao, Yan-Yi Wu, Jie-Hung Chiou
  • Publication number: 20080224284
    Abstract: A chip package structure mainly including a substrate, a chip and a lead frame is provided. The chip is disposed on the substrate, and is electrically connected to the chip by flip-chip or wire-bonding technique. The chip is electrically connected to the lead frame through a redistribution layer on the substrate. Therefore, a problem that the bonding wires may collapse due to a longer distance between the chip and the lead frame may be resolved, thus improving the yield rate thereof.
    Type: Application
    Filed: April 25, 2007
    Publication date: September 18, 2008
    Applicant: CHIPMOS TECHNOLOGIES (BERMUDA) LTD.
    Inventors: Yan-Yi Wu, Yong-Chao Qiao, Jie-Hung Chiou
  • Publication number: 20080224277
    Abstract: A method of fabricating a chip package is provided. A thin metal plate having a first protrusion part, a second protrusion part and a plurality of third protrusion parts are provided. A chip is disposed on the thin metal plate, and a plurality of bonding wires for electrically connecting the chip to the second protrusion part and the second protrusion part to the third protrusion parts is formed. An upper encapsulant and a lower encapsulant are formed on the upper surface and the lower surface of the thin metal plate respectively. The lower encapsulant has a plurality of recesses for exposing a portion of the thin metal plate at locations where the first protrusion part, the second protrusion part and the third protrusion parts are connected to one another. Finally, the thin metal plate is etched by using the lower encapsulant as an etching mask.
    Type: Application
    Filed: April 20, 2007
    Publication date: September 18, 2008
    Applicant: CHIPMOS TECHNOLOGIES (BERMUDA) LTD.
    Inventors: Yong-Chao Qiao, Jie-Hung Chiou, Yan-Yi Wu
  • Publication number: 20080191324
    Abstract: A method of fabricating a chip package structure includes the steps of providing a metal thin plate having a first protrusion part, a second protrusion part and a plurality of third protrusion parts. A chip is then disposed on the metal thin plate and a plurality of bonding wires is formed to electrically connect the chip to the second protrusion part and connect the second protrusion part to the third protrusion parts. Next, an upper encapsulant and a lower encapsulant are formed on an upper surface and a lower surface of the metal thin plate, respectively. Thereafter, an etching mask is formed on the lower surface and exposes the connections among the protrusion parts. Finally, the metal thin plate is etched, such that the first protrusion part, the second protrusion part and the third protrusion parts form a die pad, a bus bar and leads of a lead frame, respectively.
    Type: Application
    Filed: April 11, 2007
    Publication date: August 14, 2008
    Applicant: CHIPMOS TECHNOLOGIES (BERMUDA) LTD.
    Inventors: Yong-Chao Qiao, Yan-Yi Wu, Jie-Hung Chiou
  • Publication number: 20080188039
    Abstract: A method of fabricating a chip package structure includes the steps of providing a lead frame having a die pad, plural leads and at least one structure enhancement element. A chip is then disposed on the die pad and plural bonding wires are formed to electrically connect the chip to the leads. Then, an upper encapsulant and a first lower encapsulant are formed on an upper surface and a lower surface of the lead frame, respectively. The first lower encapsulant has plural concaves to expose the structure enhancement element. Finally, the structure enhancement element is etched with use of the first lower encapsulant as an etching mask until the die pad and one of the leads connected by the structure enhancement element, or two of the adjacent leads connected thereby are electrically insulated.
    Type: Application
    Filed: December 4, 2007
    Publication date: August 7, 2008
    Applicant: CHIPMOS TECHNOLOGIES (BERMUDA) LTD.
    Inventors: Jie-Hung Chiou, Yong-Chao Qiao, Yan-Yi Wu
  • Publication number: 20080185697
    Abstract: A method of fabricating a chip package structure includes the steps of providing a lead frame having a die pad, plural leads and at least one structure enhancement element. A chip is then disposed on the die pad and plural bonding wires are formed to electrically connect the chip to the leads. Then, an upper encapsulant and a first lower encapsulant are formed on an upper surface and a lower surface of the lead frame, respectively. The first lower encapsulant has plural concaves to expose the structure enhancement element. Finally, the structure enhancement element is etched with use of the first lower encapsulant as an etching mask until the die pad and one of the leads connected by the structure enhancement element, or two of the adjacent leads connected thereby are electrically insulated.
    Type: Application
    Filed: April 11, 2007
    Publication date: August 7, 2008
    Applicant: CHIPMOS TECHNOLOGIES (BERMUDA) LTD.
    Inventors: Jie-Hung Chiou, Yong-Chao Qiao, Yan-Yi Wu
  • Publication number: 20080157304
    Abstract: A chip package structure including a chip, a lead frame, first bonding wires and second bonding wires is provided. The chip has an active surface, a back surface and bonding pads disposed on the active surface. The lead frame includes a die pad, an insulating layer, transfer bonding pads and inner leads. The back surface of the chip is fixed on the die pad. The insulating layer is disposed on the die pad outside the chip. The transfer bonding pads are disposed on the insulating layer. The first bonding wires are respectively connected to the bonding pads and the transfer bonding pads. The second bonding wires are respectively connected to the transfer bonding pads and the inner leads. The chip package structure has smaller volume and a higher yield rate.
    Type: Application
    Filed: April 11, 2007
    Publication date: July 3, 2008
    Applicant: ChipMOS Technologies (Bermuda) Ltd.
    Inventors: Jie-Hung Chiou, Yong-Chao Qiao, Yan-Yi Wu
  • Publication number: 20080012106
    Abstract: A chip package structure including a chip, a lead frame, first bonding wires and second bonding wires is provided. The chip has an active surface and chip bonding pads disposed thereon. The lead frame is fixed on the chip and the lead frame includes inner leads, at least one bus bar, an insulating layer and transfer bonding pads. The bus bar is located between the chip bonding pads and the inner leads. The insulating layer is disposed on the bus bar and the transfer bonding pads are disposed thereon. The inner leads and the bus bar are located above the active surface. The chip and the insulating layer are located respectively on two opposite surfaces of the bus bar. The first bonding wires respectively connect the chip bonding pads and the transfer bonding pads. The second bonding wires respectively connect the transfer bonding pads and the inner leads.
    Type: Application
    Filed: September 8, 2006
    Publication date: January 17, 2008
    Applicants: CHIPMOS TECHNOLOGIES(SHANGHAI) LTD., CHIPMOS TECHNOLOGIES (BERMUDA) LTD.
    Inventors: Hua Pan, Jie-Hung Chiou, Chih-Lung Huang