Patents by Inventor Jie Won Ryu

Jie Won Ryu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10200059
    Abstract: A device includes a resistor string that includes a plurality resistors with voltage taps disposed therebetween. The device may select one particular voltage tap of the plurality of voltage taps based on received gray level data for a pixel of a display. The device also includes a first amplifier that may be coupled to a first terminal end of the resistor string. The device additionally includes a second amplifier that may be coupled to a second terminal end of the resistor string, wherein the plurality of voltage taps may each supply a tap voltage derived from a voltage between the first amplifier and the second amplifier, wherein any tap amplifier of the device coupled to a voltage tap of the plurality of voltage taps provides a reference voltage thereto.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: February 5, 2019
    Assignee: APPLE INC.
    Inventors: Baris Cagdaser, Derek K. Shaeffer, Hopil Bae, Jesse Aaron Richmond, Jie Won Ryu, Kingsuk Brahma, Mohammad B. Vahid Far, Shingo Hatanaka, Yafei Bi, Yuichi Okuda
  • Publication number: 20180342193
    Abstract: Electronic devices and methods for compensating for noise in a display that includes sensing a current in a sensing channel of the display. Compensating for the noise also includes sensing an observation current from noise in an observation channel of the display and scaling the observation current to generate a scaled observation current. The scaled observation current is subtracted from the sense current to generate a compensated output. The compensated output is used to drive compensation operations of the display based at least in part on the compensated output to reduce effects of the noise.
    Type: Application
    Filed: September 11, 2017
    Publication date: November 29, 2018
    Inventors: Shiping Shen, Derek K. Shaeffer, Baris Cagdaser, Hyunwoo Nho, Kingsuk Brahma, Hung Sheng Lin, Injae Hwang, Jie Won Ryu, Hyunsoo Kim, Junhua Tan, Rui Zhang, Shengkui Gao, Mohammad B. Vahid Far, Jesse A. Richmond, Sun-Il Chang
  • Publication number: 20180337687
    Abstract: A display device may include rows of pixels that displays image data on a display, data lines coupled to the rows of pixels, and a digital-to-analog converter (DAC) that outputs a ramp voltage signal including a data voltage to be depicted on a first pixel of the rows of pixels. The display device may also include a capacitor that receives the ramp voltage signal via the DAC and a circuit that sends a control signal to a circuit component that causes the DAC to couple to the capacitor via one of the data lines for a duration of time that comprises a first time when the ramp voltage signal is below the data voltage and a second time when the ramp voltage signal is approximately equal to the data voltage. The capacitor is coupled to the DAC when the ramp voltage signal is greater than zero.
    Type: Application
    Filed: May 19, 2017
    Publication date: November 22, 2018
    Inventors: Adam Adjiwibawa, David W. Lum, Wonjae Choi, Hynwoo Nho, Hopil Bae, Injae Hwang, Bryce T. Bradford, Jie Won Ryu, Hung Sheng Lin
  • Publication number: 20180336823
    Abstract: A method for operating an electronic display includes displaying image frames and receiving operational parameters of the electronic display based on illuminating a sense pixel of at least one row of pixels of the electronic display when displaying the image frames. A first set of pixels below the at least one row of pixels renders a portion of a first image frame and a second set of pixels above the at least one row of pixels renders a portion of a second image frame. The method also includes adjusting image display of a third image frame on the electronic display based on the operational parameters.
    Type: Application
    Filed: July 30, 2018
    Publication date: November 22, 2018
    Inventors: Hung Sheng Lin, Hyunwoo Nho, Chaohao Wang, Jie Won Ryu, Kingsuk Brahma, Shiping Shen, Shengkui Gao, Hyunsoo Kim, Sun-Il Chang, Junhua Tan, Injae Hwang, Myungjoon Choi
  • Patent number: 10095332
    Abstract: Systems and methods for improving display image quality on electronic displays are provided. One embodiment of an electronic display includes display pixels that share a common electrode. Each of the display pixels includes a first conductive path electrically coupled between a pixel electrode and a data line, in which the first conductive path only enables the data line to charge the pixel electrode; and a second conductive path electrically coupled between the pixel electrode and the data line in parallel with the first conductive path, in which the second conductive path enables the data line to discharge the pixel electrode such that discharge rate of the pixel electrode is approximately equal to charge rate of the pixel electrode. Additionally, the embodiment includes a touch pixel that detects occurrence and position of a touch on a screen of the electronic display using the first common electrode.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: October 9, 2018
    Assignee: Apple Inc.
    Inventors: Kasra Omid-Zohoor, Jie Won Ryu, Jiayi Jin, Hyunwoo Nho
  • Publication number: 20180090042
    Abstract: Electronic displays, systems, and methods that perform display panel sensing are provided. An electronic device may include processing circuitry that generates image data based at least in part on display panel sensing feedback and an electronic display. The electronic display may display the image data on pixels coupled to one of several sense lines. There may be an odd number of sense lines with common electrical characteristics. The electronic display may obtain display panel sense feedback at least in part by differentially sensing each one of the sense lines with sense lines with common electrical characteristics with another one of the sense lines the common electrical characteristics.
    Type: Application
    Filed: September 1, 2017
    Publication date: March 29, 2018
    Inventors: Hung Sheng Lin, Hyunwoo Nho, Shengkui Gao, Jesse A. Richmond, Jie Won Ryu, Junhua Tan, Kingsuk Brahma, Mohammad B. Vahid Far, Sun-Il Chang, Yafei Bi
  • Publication number: 20180090109
    Abstract: An electronic device includes an electronic display, whereby the electronic display includes an active area that includes a pixel having a display behavior that varies with temperature. The electronic display also includes processing circuitry. The processing circuitry may, when in operation, generate image data to send to the pixel and adjust the image data to generate corrected image data based at least in part on a stored correction value for the pixel, wherein the stored correction value corresponds to an effect of temperature on the pixel.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 29, 2018
    Inventors: Hung Sheng Lin, Sun-Il Chang, Hyunwoo Nho, Jie Won Ryu, Junhua Tan
  • Publication number: 20180082620
    Abstract: Electronic devices and methods pertain to reducing artifacts resulting from a thermal profile preexisting a boot up of an electronic device are disclosed. Scanning driving circuitry of the electronic device scans at least a portion of one or more pixels of an active area of a display using a boot up scan before a boot up sequence of at least a portion of an electronic device completes. The results of the boot up scan are stored in local buffers and transferred to one or more processors upon connection to the one or more processors. The results of the boot up scan cause the one or more processors to modify image data to reduce or eliminate artifacts that may result during boot up due to thermal profiles or other parameters that may cause artifacts.
    Type: Application
    Filed: September 6, 2017
    Publication date: March 22, 2018
    Inventors: Sun-Il Chang, Hyunwoo Nho, Hung Sheng Lin, Junhua Tan, Jie Won Ryu, Kingsuk Brahma, Jesse A. Richmond, Mohammad B. Vahid Far, Yafei Bi
  • Publication number: 20180081234
    Abstract: Devices, storage media, and methods for compensating for aging and temperature variations using dual-loop compensation are provided. The compensating for temperature and aging variations of one or more pixels of the display using a coarse scan loop updated at a faster rate. Compensation also includes compensating for aging variations of the one or more pixels of the display using a fine scan loop updated at a slower rate.
    Type: Application
    Filed: August 15, 2017
    Publication date: March 22, 2018
    Inventors: Hung Sheng Lin, Jesse A. Richmond, Mohammad B. Vahid Far, Tobias Jung, Jie Won Ryu, Hyunwoo Nho, Kingsuk Brahma, Sun-Il Chang, Junhua Tan, Marc Albrecht, Chih-Wei Yeh, Chaohao Wang
  • Publication number: 20180082633
    Abstract: Electronic devices, storage medium containing instructions, and methods pertain to scanning a display during a sensing phase for the display. One or more parameters pertaining to operation or conditions around the display are obtained. Using the obtained one or more parameters, scanning mode parameters used for sensing are set based at least in part on the obtained one or more parameters. Using the scanning mode parameters, the display is scanned during a sensing phase of the display while reducing the likelihood of visible artifacts.
    Type: Application
    Filed: September 7, 2017
    Publication date: March 22, 2018
    Inventors: Junhua Tan, Sun-Il Chang, Sebastian Knitter, Jie Won Ryu, Hyunwoo Nho, Lu Zhang, Nicolas P. Bonnier, Hung Sheng Lin, Rui Zhang
  • Publication number: 20180082631
    Abstract: Systems, methods, and devices for adjusting image display on an electronic display by predicting a temperature change of the electronic display due to heat-producing components near the display or due to changes in content. An electronic device may include an electronic display and processing circuitry. The electronic display may include pixels with behaviors that vary with temperature. As such, the processing circuitry may generate image data to send to the electronic display and adjust the image data or vary an operation of the electronic display based at least in part on a predicted temperature effect on at least part of the active area of the electronic display. The processing circuitry may determine the predicted temperature effect at least in part due to a first heat producing component or changes in content of the image data.
    Type: Application
    Filed: August 10, 2017
    Publication date: March 22, 2018
    Inventors: Sun Il Chang, Hung Sheng Lin, Hyunwoo Nho, Jie Won Ryu, Junhua Tan, Chih-Wei Yeh, Chaohao Wang, Paolo Sacchetto
  • Publication number: 20180082621
    Abstract: Systems and methods are provided for differential sensing (DS), difference-differential sensing (DDS), correlated double sampling (CDS), and/or programmable capacitor matching to reduce display panel sensing noise. An electronic device may include one or more processors and an electronic display. The one or more processors may generate image data and adjust the image data based at least in part on display sensing feedback. The electronic display may employ sensing circuitry that obtains the display sensing feedback at least in part by applying test data to a pixel of a column of an active area of the display and differentially senses an electrical value of the pixel in comparison to a reference signal from a different column. This reference signal may provide a common mode noise reference, which is removed by the differential sensing and thereby enhances a quality of the sensed electrical value of the pixel.
    Type: Application
    Filed: September 7, 2017
    Publication date: March 22, 2018
    Inventors: Hung Sheng Lin, Shengkui Gao, Hyunwoo Nho, Chin-Wei Lin, Mohammad B. Vahid Far, Jie Won Ryu, Kingsuk Brahma, Junhua Tan, Sun-II Chang, Shinya Ono, Jesse A. Richmond, Yafei Bi, Derek K. Shaeffer
  • Publication number: 20180083648
    Abstract: A device includes a resistor string that includes a plurality resistors with voltage taps disposed therebetween. The device may select one particular voltage tap of the plurality of voltage taps based on received gray level data for a pixel of a display. The device also includes a first amplifier that may be coupled to a first terminal end of the resistor string. The device additionally includes a second amplifier that may be coupled to a second terminal end of the resistor string, wherein the plurality of voltage taps may each supply a tap voltage derived from a voltage between the first amplifier and the second amplifier, wherein any tap amplifier of the device coupled to a voltage tap of the plurality of voltage taps provides a reference voltage thereto.
    Type: Application
    Filed: September 6, 2017
    Publication date: March 22, 2018
    Inventors: Baris Cagdaser, Derek K. Shaeffer, Hopil Bae, Jesse Aaron Richmond, Jie Won Ryu, Kingsuk Brahma, Mohammad B. Vahid Far, Shingo Hatanaka, Yafei Bi, Yuichi Okuda
  • Publication number: 20180082634
    Abstract: An apparatus receives current image frame data and data relating to at least one previous image frame for an electronic display. One or more parameters related to hysteresis of transistors in the electronic display are sensed. A correlation device, such as a look-up table, receives the sensed parameter or parameters and the data relating to one or more image frames, and uses this information, at least in part, to output an appropriate compensation signal for the current image frame data. The compensated current image frame data may then be supplied to the electronic display to reduce or eliminate the effects of hysteresis on the displayed image.
    Type: Application
    Filed: September 11, 2017
    Publication date: March 22, 2018
    Inventors: Chaohao Wang, Chih-Wei Yeh, Chin-Wei Lin, Hung Sheng Lin, Hyunwoo Nho, Injae Hwang, Jie Won Ryu, Junhua Tan, Paolo Sacchetto, Rui Zhang, Shengkui Gao, Sun-Il Chang, Wei H. Yao, Howard H. Tang
  • Publication number: 20180075798
    Abstract: A mobile electronic device includes a display having a pixel and processing circuitry separate from but communicatively coupled to the display. The processing circuitry prepares image data to send to the pixel and adjusts the image data to compensate for operational variations of the display based on feedback received from the display that describes a present operational behavior of the pixel. The mobile electronic device also includes additional electronic components that affect the present operational behavior of the pixel depending on present operational behavior of the additional electronic components.
    Type: Application
    Filed: July 27, 2017
    Publication date: March 15, 2018
    Inventors: Hyunwoo Nho, Hung Sheng Lin, Jie Won Ryu, Junhua Tan, Sun-Il Chang, Shengkui Gao, Rui Zhang, Injae Hwang, Kingsuk Brahma, Jesse Aaron Richmond, Shiping Shen, Hyunsoo Kim, Sebastian Knitter, Lu Zhang, Nicolas P. Bonnier, Chih-Wei Yeh, Chaohao Wang, Paolo Sacchetto, Chin-Wei Lin, Mohammad B Vahid Far, Shinya Ono, Yafei Bi, Majid Gharghi, Kavinaath Murugan, Yun Wang, Derek K. Shaeffer, Baris Cagdaser, Tobias Jung, Marc Albrecht, Myung-Je Cho
  • Publication number: 20180074199
    Abstract: A method for operating an electronic display includes receiving, using a controller, sensor data related to operational parameters of the electronic display based at least in part on illuminating a sense pixel of at least one row of pixels of the electronic display, wherein a first set of pixels below the at least one row of pixels renders a portion of a first image frame and a second set of pixels above the at least one row of pixels renders a portion of a second image frame. The method also includes adjusting, using the controller, image display on the electronic display based at least in part on the sensor data.
    Type: Application
    Filed: August 7, 2017
    Publication date: March 15, 2018
    Inventors: Hung Sheng Lin, Hyunwoo Nho, Jie Won Ryu, Junhua Tan, Sun-Il Chang
  • Publication number: 20180075801
    Abstract: Aspects of the subject technology relate to electronic devices with displays. A display may include an array of display pixels each having a drive transistor and an organic light-emitting diode. A pulse-width-modulated current may be provided to the organic light-emitting diode during each display frame to compensate for an on-bias compensation applied to the drive transistor between display frames. The pulse-width-modulated current may be provided with a pulse-width-modulation ratio that decreases over the course of each display frame. The decrease of the pulse-width-modulation ratio for each display frame may be determined based on a peak luminance for that display frame. The reduction in flicker provided by the pulse-width-modulated current may facilitate operation of the display with a reduced refresh rate, thereby reducing power consumption by the display.
    Type: Application
    Filed: January 11, 2017
    Publication date: March 15, 2018
    Inventors: Chengrui LE, Chaohao Wang, Kingsuk Brahma, Jie Won Ryu, Chin-Wei Lin, Rui Zhang
  • Publication number: 20180059868
    Abstract: Touch induced flicker for variable refresh rate (VRR) displays can be reduced by adjusting one or more voltages. Synchronization of touch sensing operations after an immediate exit can introduce flicker issues into the VRR display. In some examples, the touched induced flicker can be reduced or eliminated by tuning the voltage on a common electrode (Vcom) to a tuning point that reduces a maximum error below a threshold, irrespective of refresh rate. In some examples, touch induced flicker can be reduced or eliminated by monitoring average Vcom, and when the change in average Vcom exceeds a threshold, Vcom can be adjusted to counteract the change in average Vcom due to the variable refresh rate and/or immediate exit. In some examples, touch induced flicker can be reduced or eliminated by applying a direct current (DC) pedestal to pixel gate lines during touch sensing scans.
    Type: Application
    Filed: July 14, 2017
    Publication date: March 1, 2018
    Inventors: Kingsuk BRAHMA, Jie Won RYU, Hopil BAE, Yafei BI
  • Publication number: 20180053466
    Abstract: An electronic device may have a flexible display such as an organic light-emitting diode display. A strain sensing resistor may be formed on a bent tail portion of the flexible display to gather strain measurements. Resistance measurement circuitry in a display driver integrated circuit may make resistance measurements on the strain sensing resistor and a temperature compensation resistor to measure strain. A crack detection line may be formed from an elongated pair of traces that are coupled at their ends to form a loop. The crack detection line may run along a peripheral edge of the flexible display. Crack detection circuitry may monitor the resistance of the crack detection line to detect cracks. The crack detection circuitry may include switches that adjust the length of the crack detection line and thereby allow resistances to be measured for different segments of the line.
    Type: Application
    Filed: September 23, 2016
    Publication date: February 22, 2018
    Inventors: Rui Zhang, Mohammad Hajirostam, Hung Sheng Lin, Mohammad B. Vahid Far, Sang Y. Youn, Zhen Zhang, Prashant Mandlik, Sun-Il Chang, Jie Won Ryu, Shengkui Gao, Hyunwoo Nho, Wei H. Yao, Yafei Bi, Yun Wang
  • Publication number: 20170243548
    Abstract: Systems and methods are provided for improving displayed image quality of an electronic display that includes a display pixel. The electronic display displays a first image frame directly after a second image frame by applying an analog electrical signal to the display pixel. To facilitate display of the first image frame, circuitry receives image data corresponding to the image frame, in which the image data includes a grayscale value that indicates target luminance of the display pixel; determines expected refresh rate of the first image frame based at least in part on actual refresh rate of the second image frame; determines a pixel response correction offset based at least in part on the expected refresh rate of the first image frame; and determines processed image data by applying the pixel response correction offset to the grayscale value, in which the processed image data indicates magnitude of the analog electrical signal.
    Type: Application
    Filed: September 24, 2016
    Publication date: August 24, 2017
    Inventors: Chaohao Wang, Lu Zhang, Zhibing Ge, Shih-Chyuan Fan Jiang, Ilie Garbacea, Marc Albrecht, Kingsuk Brahma, Hopil Bae, Paolo Sacchetto, Jie Won Ryu, Sandro H. Pintz, Chengrui Le