Patents by Inventor Jifei Qian

Jifei Qian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11814084
    Abstract: Techniques for determining an output from a plurality of sensor modalities are discussed herein. Features from a radar sensor, a lidar sensor, and an image sensor may be input into respective models to determine respective intermediate outputs associated with a tracks associated with an object and associated confidence levels. The Intermediate outputs from a radar model, a lidar model, and an vision model may be input into a fused model to determine a fused confidence level and fused output associated with the track. The fused confidence level and the individual confidence levels are compared to a threshold to generate the track to transmit to a planning system or prediction system of an autonomous vehicle. Additionally, a vehicle controller can control the autonomous vehicle based on the track and/or on the confidence level(s).
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: November 14, 2023
    Assignee: Zoox, Inc.
    Inventors: Subhasis Das, Jifei Qian, Liujiang Yan
  • Publication number: 20230192145
    Abstract: Techniques for determining an output from a plurality of sensor modalities are discussed herein. Features from a radar sensor, a lidar sensor, and an image sensor may be input into respective models to determine respective intermediate outputs associated with a tracks associated with an object and associated confidence levels. The Intermediate outputs from a radar model, a lidar model, and an vision model may be input into a fused model to determine a fused confidence level and fused output associated with the track. The fused confidence level and the individual confidence levels are compared to a threshold to generate the track to transmit to a planning system or prediction system of an autonomous vehicle. Additionally, a vehicle controller can control the autonomous vehicle based on the track and/or on the confidence level(s).
    Type: Application
    Filed: December 17, 2021
    Publication date: June 22, 2023
    Inventors: Subhasis Das, Jifei Qian, Liujiang Yan
  • Patent number: 11609321
    Abstract: Some radar sensors may provide a Doppler measurement indicating a relative velocity of an object to a velocity of the radar sensor. Techniques for determining a two-or-more-dimensional velocity from one or more radar measurements associated with an object may comprise determining a data structure that comprises a yaw assumption and a set of weights to tune the influence of the yaw assumption. Determining the two-or-more-dimensional velocity may further comprise using the data structure as part of regression algorithm to determine a velocity and/or yaw rate associated with the object.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: March 21, 2023
    Assignee: Zoox, Inc.
    Inventors: Anton Mario Bongio Karrman, Michael Carsten Bosse, Subhasis Das, Francesco Papi, Jifei Qian, Shiwei Sheng, Chuang Wang
  • Publication number: 20230003871
    Abstract: Sensors, including radar sensors, may be used to detect objects in an environment. In an example, a vehicle may include one or more radar sensors that sense objects around the vehicle, e.g., so the vehicle can navigate relative to the objects. A plurality of radar points from one or more radar scans are associated with a sensed object and a representation of the sensed object is determined from the plurality of radar points. The representation may be compared to track information of previously-identified, tracked objects. Based on the comparison, the sensed object may be associated with one of the tracked objects, and, alternatively, the track information may be updated based on the representation. Conversely, the comparison may indicate that the sensed object is not associated with any of the tracked objects. In this instance, the representation may be used to generate a new track, e.g., for the newly-sensed object.
    Type: Application
    Filed: June 30, 2021
    Publication date: January 5, 2023
    Inventors: Jifei Qian, Joshua Kriser Cohen, Chuang Wang
  • Publication number: 20230003872
    Abstract: Sensors, including radar sensors, may be used to detect objects in an environment. In an example, a vehicle may include one or more radar sensors that sense objects around the vehicle, e.g., so the vehicle can navigate relative to the objects. A plurality of radar points from one or more radar scans are associated with a sensed object and a representation of the sensed object is determined from the plurality of radar points. The representation may be compared to track information of previously-identified, tracked objects. Based on the comparison, the sensed object may be associated with one of the tracked objects, and, alternatively, the track information may be updated based on the representation. Conversely, the comparison may indicate that the sensed object is not associated with any of the tracked objects. In this instance, the representation may be used to generate a new track, e.g., for the newly-sensed object.
    Type: Application
    Filed: June 30, 2021
    Publication date: January 5, 2023
    Inventors: Jifei Qian, Joshua Kriser Cohen, Chuang Wang
  • Patent number: 11520037
    Abstract: Techniques for updating data operations in a perception system are discussed herein. A vehicle may use a perception system to capture data about an environment proximate to the vehicle. The perception system may receive state data stored in cyclic buffer of globally registered detection and occasionally converted to gridded point cloud in a local reference frame. The two-dimensional gridded point cloud may be processed using one or more neural networks to generate semantic data associated with a scene or physical environment surrounding the vehicle such that the vehicle can make environment aware operational decisions, which may improve reaction time(s) and/or safety outcomes of the autonomous vehicle.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: December 6, 2022
    Assignee: Zoox, Inc.
    Inventors: Anton Mario Bongio Karrman, Cooper Stokes Sloan, Chuang Wang, Joshua Kriser Cohen, Yassen Ivanchev Dobrev, Jifei Qian
  • Publication number: 20210255307
    Abstract: Some radar sensors may provide a Doppler measurement indicating a relative velocity of an object to a velocity of the radar sensor. Techniques for determining a two-or-more-dimensional velocity from one or more radar measurements associated with an object may comprise determining a data structure that comprises a yaw assumption and a set of weights to tune the influence of the yaw assumption. Determining the two-or-more-dimensional velocity may further comprise using the data structure as part of regression algorithm to determine a velocity and/or yaw rate associated with the object.
    Type: Application
    Filed: February 19, 2020
    Publication date: August 19, 2021
    Inventors: Anton Mario Bongio Karrman, Michael Carsten Bosse, Subhasis Das, Francesco Papi, Jifei Qian, Shiwei Sheng, Chuang Wang
  • Publication number: 20210096241
    Abstract: Techniques for updating data operations in a perception system are discussed herein. A vehicle may use a perception system to capture data about an environment proximate to the vehicle. The perception system may receive state data stored in cyclic buffer of globally registered detection and occasionally converted to gridded point cloud in a local reference frame. The two-dimensional gridded point cloud may be processed using one or more neural networks to generate semantic data associated with a scene or physical environment surrounding the vehicle such that the vehicle can make environment aware operational decisions, which may improve reaction time(s) and/or safety outcomes of the autonomous vehicle.
    Type: Application
    Filed: September 30, 2019
    Publication date: April 1, 2021
    Inventors: Anton Mario Bongio Karrman, Cooper Stokes Sloan, Chuang Wang, Joshua Kriser Cohen, Yassen Ivanchev Dobrev, Jifei Qian