Patents by Inventor Jihperng Leu

Jihperng Leu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8963421
    Abstract: An electroluminescent device includes: a substrate; an electroluminescent layered structure disposed over the substrate and including first and second electrode layers and an electroluminescent material layer disposed between the first and second electrode layers; and a moisture barrier layer in contact with the electroluminescent layered structure for preventing moisture from diffusing into the electroluminescent layered structure. The moisture barrier layer includes at least two inorganic films of a silicon-nitrogen-containing compound and at least one polymer film interposed between the inorganic films.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: February 24, 2015
    Assignee: National Chiao Tung University
    Inventors: Jihperng Leu, Shu-Hao Syu, Hung-En Tu, Chih Wang
  • Publication number: 20140077691
    Abstract: An electroluminescent device includes: a substrate; an electroluminescent layered structure disposed over the substrate and including first and second electrode layers and an electroluminescent material layer disposed between the first and second electrode layers; and a moisture barrier layer in contact with the electroluminescent layered structure for preventing moisture from diffusing into the electroluminescent layered structure. The moisture barrier layer includes at least two inorganic films of a silicon-nitrogen-containing compound and at least one polymer film interposed between the inorganic films.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 20, 2014
    Applicant: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Jihperng Leu, Shu-Hao Syu, Hung-En Tu, Chih Wang
  • Publication number: 20130330482
    Abstract: The present invention relates to carbon-doped silicon nitride thin film and forming method and device thereof The carbon-doped silicon nitride thin film is prepared by using a precursor having at least one of bis(dimethylamino)diethylsilane, N,N-Dimethyltrimethylsilylamine and a cyclic structure with a N—Si bond. The method for forming a carbon-doped silicon nitride thin film includes: providing a precursor having at least one of bis(dimethylamino)diethylsilane, N,N-Dimethyltrimethylsilylamine and a cyclic structure with a N—Si bond to form the carbon-doped silicon nitride thin film. The device for forming the carbon-doped silicon nitride thin film includes a reactor and a container with the aforementioned precursor coupled to the reactor.
    Type: Application
    Filed: January 30, 2013
    Publication date: December 12, 2013
    Applicant: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Jihperng Leu, Hung-En Tu, Wei-Gan Chiu
  • Patent number: 8299617
    Abstract: Described is a method and apparatus for forming interconnects with a metal-metal oxide electromigration barrier and etch-stop. In one embodiment of the invention, the method includes depositing a metal layer on the top of a planarized interconnect layer, the interconnect layer having an interlayer dielectric (ILD) with a top that is planar with the top of an electrically conductive interconnect. In one embodiment of the invention, the method includes reacting the metal layer with the ILD to form a metal oxide layer on the top of the ILD. At the same time, the metal layer will not be significantly oxidized by the electrically conductive interconnect, thus forming a metal barrier on the electrically conductive interconnect to improve electromigration performance. The metal barrier and metal oxide layer together comprise a protective layer. A second ILD may be subsequently formed on the protective layer, and the protective layer may act an etch-stop during a subsequent etch of the second ILD.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: October 30, 2012
    Assignee: Intel Corporation
    Inventors: Xiaorong Morrow, Jihperng Leu, Markus Kuhn, Jose A. Maiz
  • Publication number: 20100219529
    Abstract: Described is a method and apparatus for forming interconnects with a metal-metal oxide electromigration barrier and etch-stop. In one embodiment of the invention, the method includes depositing a metal layer on the top of a planarized interconnect layer, the interconnect layer having an interlayer dielectric (ILD) with a top that is planar with the top of an electrically conductive interconnect. In one embodiment of the invention, the method includes reacting the metal layer with the ILD to form a metal oxide layer on the top of the ILD. At the same time, the metal layer will not be significantly oxidized by the electrically conductive interconnect, thus forming a metal barrier on the electrically conductive interconnect to improve electromigration performance. The metal barrier and metal oxide layer together comprise a protective layer. A second ILD may be subsequently formed on the protective layer, and the protective layer may act an etch-stop during a subsequent etch of the second ILD.
    Type: Application
    Filed: April 19, 2010
    Publication date: September 2, 2010
    Inventors: Xiaorong Morrow, Jihperng Leu, Markus Kuhn, Jose A. Maiz
  • Patent number: 7727892
    Abstract: Described is a method and apparatus for forming interconnects with a metal-metal oxide electromigration barrier and etch-stop. In one embodiment of the invention, the method includes depositing a metal layer on the top of a planarized interconnect layer, the interconnect layer having an interlayer dielectric (ILD) with a top that is planar with the top of an electrically conductive interconnect. In one embodiment of the invention, the method includes reacting the metal layer with the ILD to form a metal oxide layer on the top of the ILD. At the same time, the metal layer will not be significantly oxidized by the electrically conductive interconnect, thus forming a metal barrier on the electrically conductive interconnect to improve electromigration performance. The metal barrier and metal oxide layer together comprise a protective layer. A second ILD may be subsequently formed on the protective layer, and the protective layer may act an etch-stop during a subsequent etch of the second ILD.
    Type: Grant
    Filed: September 25, 2002
    Date of Patent: June 1, 2010
    Assignee: Intel Corporation
    Inventors: Xiaorong Morrow, Jihperng Leu, Markus Kuhn, Jose A. Maiz
  • Patent number: 7466025
    Abstract: An inter-layer dielectric structure and method of making such structure are disclosed. A composite dielectric layer comprising a porous matrix, as well as a porogen in certain variations, is formed adjacent a sacrificial dielectric layer. Subsequent to other processing treatments, a portion of the sacrificial dielectric layer is decomposed and removed through a portion of the porous matrix using supercritical carbon dioxide leaving voids in positions previously occupied by portions of the sacrificial dielectric layer. The resultant structure has a desirably low k value as a result of the voids and materials comprising the porous matrix and other structures. The composite dielectric layer may be used in concert with other dielectric layers of varying porosity, dimensions, and material properties to provide varied mechanical and electrical performance profiles.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: December 16, 2008
    Assignee: Intel Corporation
    Inventors: Michael D. Goodner, Jihperng Leu
  • Patent number: 7348283
    Abstract: A method for forming a mechanically robust dielectric film comprises depositing a dielectric film on a substrate and then inducing a compressive strain in a top surface of the dielectric film to form a compressive strained surface. The compressive strain may be induced using an ion implantation process that bombards the dielectric film with ions that become implanted in the top surface of the dielectric film. The damage caused during ion implantation, as well as the implanted ions themselves, causes an expansion of the top surface which induces a biaxial compressive residual stress, thereby forming a compressive strained surface. The compressive strain reduces the amount of surface flaws present on the top surface, thereby improving the toughness of the dielectric film. In addition, the ion implantation process may modify the plasticity of the top surface and reduce the likelihood of fracture mechanisms based on dislocation pileup for crack initiation.
    Type: Grant
    Filed: December 27, 2004
    Date of Patent: March 25, 2008
    Assignee: Intel Corporation
    Inventors: Jihperng Leu, Jun He
  • Patent number: 7339271
    Abstract: Described is a method and apparatus for forming interconnects with a metal-metal oxide electromigration barrier and etch-stop. In one embodiment of the invention, the method includes depositing a metal layer on the top of a planarized interconnect layer, the interconnect layer having an interlayer dielectric (ILD) with a top that is planar with the top of an electrically conductive interconnect. In one embodiment of the invention, the method includes reacting the metal layer with the ILD to form a metal oxide layer on the top of the ILD. At the same time, the metal layer will not be significantly oxidized by the electrically conductive interconnect, thus forming a metal barrier on the electrically conductive interconnect to improve electromigration performance. The metal barrier and metal oxide layer together comprise a protective layer. A second ILD may be subsequently formed on the protective layer, and the protective layer may act an etch-stop during a subsequent etch of the second ILD.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: March 4, 2008
    Assignee: Intel Corporation
    Inventors: Xiaorong Morrow, Jihperng Leu, Markus Kuhn, Jose A. Maiz
  • Patent number: 7320935
    Abstract: The present invention includes an embodiment that relates to method of forming an interconnect. The method includes the effect of reducing electromigration in a metallization. An article achieved by the inventive method includes a first interconnect disposed above a substrate; a first conductive diffusion barrier layer disposed above and on the first interconnect; an upper interconnect, that is either landed or unlanded and that is disposed above the first interconnect; and an upper conductive diffusion barrier layer disposed above and on the upper interconnect.
    Type: Grant
    Filed: August 5, 2003
    Date of Patent: January 22, 2008
    Assignee: Intel Corporation
    Inventors: Jihperng Leu, Christopher D. Thomas
  • Patent number: 7294934
    Abstract: A low-k dielectric sacrificial material is formed within a microelectronic structure covered with a suitable porous or low density permeable material. At an appropriate time, the underlying sacrificial material is decomposed and diffused away through the overlying permeable material. As a result, at least one void is created, contributing to desirable dielectric characteristics.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: November 13, 2007
    Assignee: Intel Corporation
    Inventors: Grant M. Kloster, Xiarong Morrow, Jihperng Leu
  • Patent number: 7239019
    Abstract: An inter-layer dielectric structure and method of making such structure are disclosed. A composite dielectric layer, initially comprising a porous matrix and a porogen, is formed. Subsequent to other processing treatments, the porogen is decomposed and removed from at least a portion of the porous matrix, leaving voids defined by the porous matrix in areas previously occupied by the porogen. The resultant structure has a desirably low k value as a result of the porosity and materials comprising the porous matrix and porogen. The composite dielectric layer may be used in concert with other dielectric layers of varying porosity, dimensions, and material properties to provide varied mechanical and electrical performance profiles.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: July 3, 2007
    Assignee: Intel Corporation
    Inventors: Jihperng Leu, Grant M. Kloster, David H. Gracias, Lee D. Rockford, Peter K. Moon, Chris E. Barns
  • Patent number: 7214594
    Abstract: A method and apparatus are provided an interconnect cladding layer. In one embodiment, a first sacrificial layer is deposited over a substrate and patterned. In the vias created during the patterning operation, a conductive material is placed to create conductive interconnects. After planarizing the conductive material, the sacrificial layer is removed leaving the interconnect exposed. A cladding layer is then deposited over the conductive material.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: May 8, 2007
    Assignee: Intel Corporation
    Inventors: Lawrence D. Wong, Jihperng Leu, Grant Kloster, Andrew Ott, Patrick Morrow
  • Patent number: 7175970
    Abstract: In an embodiment, a trench is formed above a via from a photo resist (PR) trench pattern in a dielectric layer. The trench is defined by two sidewall portions and base portions. The base portions of the sidewalls are locally treated by a post treatment using the PR trench pattern as mask to enhance mechanical strength of portions of the dielectric layer underneath the base portions. Seed and barrier layers are deposited on the trench and the via. The trench and via are filled with a metal layer. In another embodiment, a trench is formed from a PR trench pattern in a dielectric layer. A pillar PR is deposited and etched to define a pillar opening having a pillar surface. The pillar opening is locally treated on the pillar surface by a post treatment to enhance mechanical strength of portion of the dielectric layer underneath the pillar surface.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: February 13, 2007
    Assignee: Intel Corporation
    Inventors: Jun He, Jihperng Leu
  • Patent number: 7164206
    Abstract: The invention relates to a microelectronic device and a structure therein that includes a diffusion barrier layer having a first thickness and a first dielectric constant. An etch stop layer is disposed above and on the diffusion barrier layer. The etch stop layer has a second thickness and a second dielectric constant.
    Type: Grant
    Filed: March 28, 2001
    Date of Patent: January 16, 2007
    Assignee: Intel Corporation
    Inventors: Grant Kloster, Jihperng Leu, Lawrence Wong, Andrew Ott, Patrick Marrow
  • Patent number: 7145245
    Abstract: The present invention discloses a method including providing a substrate; forming a dielectric over the substrate, the dielectric having a k value of about 2.5 or lower, the dielectric having a Young's modulus of elasticity of about 15 GigaPascals or higher; forming an opening in the dielectric; and forming a conductor in the opening. The present invention further discloses a structure including a substrate; a dielectric located over the substrate, the dielectric having a k value of 2.5 or lower, the dielectric having a Young's modulus of elasticity of about 15 GigaPascals or higher; an opening located in the dielectric; and a conductor located in the opening.
    Type: Grant
    Filed: September 2, 2005
    Date of Patent: December 5, 2006
    Assignee: Intel Corporation
    Inventors: Grant Kloster, Lee Rockford, Jihperng Leu
  • Publication number: 20060138665
    Abstract: A method for forming a mechanically robust dielectric film comprises depositing a dielectric film on a substrate and then inducing a compressive strain in a top surface of the dielectric film to form a compressive strained surface. The compressive strain may be induced using an ion implantation process that bombards the dielectric film with ions that become implanted in the top surface of the dielectric film. The damage caused during ion implantation, as well as the implanted ions themselves, causes an expansion of the top surface which induces a biaxial compressive residual stress, thereby forming a compressive strained surface. The compressive strain reduces the amount of surface flaws present on the top surface, thereby improving the toughness of the dielectric film. In addition, the ion implantation process may modify the plasticity of the top surface and reduce the likelihood of fracture mechanisms based on dislocation pileup for crack initiation.
    Type: Application
    Filed: December 27, 2004
    Publication date: June 29, 2006
    Inventors: Jihperng Leu, Jun He
  • Publication number: 20060073416
    Abstract: In an embodiment, a trench is formed above a via from a photo resist (PR) trench pattern in a dielectric layer. The trench is defined by two sidewall portions and base portions. The base portions of the sidewalls are locally treated by a post treatment using the PR trench pattern as mask to enhance mechanical strength of portions of the dielectric layer underneath the base portions. Seed and barrier layers are deposited on the trench and the via. The trench and via are filled with a metal layer. In another embodiment, a trench is formed from a PR trench pattern in a dielectric layer. A pillar PR is deposited and etched to define a pillar opening having a pillar surface. The pillar opening is locally treated on the pillar surface by a post treatment to enhance mechanical strength of portion of the dielectric layer underneath the pillar surface.
    Type: Application
    Filed: November 22, 2005
    Publication date: April 6, 2006
    Inventors: Jun He, Jihperng Leu
  • Patent number: 7018918
    Abstract: An inter-layer dielectric structure and method of making such structure are disclosed. A composite dielectric layer, initially comprising a porous matrix and a porogen, is formed. Subsequent to other processing treatments, the porogen is decomposed and removed from at least a portion of the porous matrix, leaving voids defined by the porous matrix in areas previously occupied by the porogen. The resultant structure has a desirably low k value as a result of the porosity and materials comprising the porous matrix and porogen. The composite dielectric layer may be used in concert with other dielectric layers of varying porosity, dimensions, and material properties to provide varied mechanical and electrical performance profiles.
    Type: Grant
    Filed: November 3, 2003
    Date of Patent: March 28, 2006
    Assignee: Intel Corporation
    Inventors: Grant M. Kloster, Kevin P. O'brien, Michael D. Goodner, Jihperng Leu, David H. Gracias, Lee D. Rockford, Peter K. Moon, Chris E. Barns
  • Patent number: 6998216
    Abstract: In an embodiment, a trench is formed above a via from a photo resist (PR) trench pattern in a dielectric layer. The trench is defined by two sidewall portions and base portions. The base portions of the sidewalls are locally treated by a post treatment using the PR trench pattern as mask to enhance mechanical strength of portions of the dielectric layer underneath the base portions. Seed and barrier layers are deposited on the trench and the via. The trench and via are filled with a metal layer. In another embodiment, a trench is formed from a PR trench pattern in a dielectric layer. A pillar PR is deposited and etched to define a pillar opening having a pillar surface. The pillar opening is locally treated on the pillar surface by a post treatment to enhance mechanical strength of portion of the dielectric layer underneath the pillar surface.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: February 14, 2006
    Assignee: Intel Corporation
    Inventors: Jun He, Jihperng Leu