Patents by Inventor Jillian Nolan

Jillian Nolan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220362770
    Abstract: The microfluidic devices and systems disclosed herein reduce sample loss and help decrease sample processing bottlenecks for applications such as next generation sequencing (NGS). The microfluidic devices include a plurality of reaction modules. Each reaction module may comprise one or more reaction circuits. Each reaction circuit may comprise a single reaction flow channel with each reaction circuit connected by a bridge flow channel. Alternatively, each reaction circuit may comprise two or more reaction flow channels connected by two or more bridge flow channels. The combination of any two bridge flow channels and a portion of the two or more reaction flow channels between the any two bridge flow channels defining may define the reaction circuit. The reaction module may be arranged as nodes connected by bridge flow channels or each reaction module may be arranged in a parallel fashion on the microfluidic device.
    Type: Application
    Filed: July 22, 2022
    Publication date: November 17, 2022
    Inventors: Paul Blainey, Son Hoang, Huaibin (Eli) Zhang, Jillian Nolan, Soohong Kim
  • Patent number: 11406980
    Abstract: The microfluidic devices and systems disclosed herein reduce sample loss and help decrease sample processing bottlenecks for applications such as next generation sequencing (NGS). The microfluidic devices include a plurality of reaction modules. Each reaction module may comprise one or more reaction circuits. Each reaction circuit may comprise a single reaction flow channel with each reaction circuit connected by a bridge flow channel. Alternatively, each reaction circuit may comprise two or more reaction flow channels connected by two or more bridge flow channels. The combination of any two bridge flow channels and a portion of the two or more reaction flow channels between the any two bridge flow channels defining may define the reaction circuit. The reaction module may be arranged as nodes connected by bridge flow channels or each reaction module may be arranged in a parallel fashion on the microfluidic device.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: August 9, 2022
    Assignees: The Broad Institute, Inc., Massachusetts Institute of Technology
    Inventors: Paul Blainey, Son Hoang, Huaibin (Eli) Zhang, Jillian Nolan, Soohong Kim
  • Publication number: 20180104690
    Abstract: The microfluidic devices and systems disclosed herein reduce sample loss and help decrease sample processing bottlenecks for applications such as next generation sequencing (NGS). The microfluidic devices include a plurality of reaction modules. Each reaction module may comprise one or more reaction circuits. Each reaction circuit may comprise a single reaction flow channel with each reaction circuit connected by a bridge flow channel. Alternatively, each reaction circuit may comprise two or more reaction flow channels connected by two or more bridge flow channels. The combination of any two bridge flow channels and a portion of the two or more reaction flow channels between the any two bridge flow channels defining may define the reaction circuit. The reaction module may be arranged as nodes connected by bridge flow channels or each reaction module may be arranged in a parallel fashion on the microfluidic device.
    Type: Application
    Filed: February 25, 2016
    Publication date: April 19, 2018
    Inventors: Paul Blainey, Son Hoang, Huaibin (Eli) Zhang, Jillian Nolan, Soohong Kim