Patents by Inventor Jim Tatum

Jim Tatum has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10992110
    Abstract: A VCSEL can include: an active region configured to emit light; a blocking region over or under the active region, the blocking region defining a plurality of channels therein; a plurality of conductive channel cores in the plurality of channels of the blocking region, wherein the plurality of conductive channel cores and blocking region form an isolation region; a top electrical contact; and a bottom electrical contact electrically coupled with the top electrical contact through the active region and plurality of conductive channel cores. At least one conductive channel core is a light emitter, and others can be spare light emitters, photodiodes, modulators, and combinations thereof. A waveguide can optically couple two or more of the conductive channel cores. In some aspects, the plurality of conductive channel cores are optically coupled to form a common light emitter that emits light (e.g., single mode) from the plurality of conductive channel cores.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: April 27, 2021
    Assignee: II-VI DELAWARE, INC.
    Inventors: Jim Tatum, Gary Landry
  • Publication number: 20210098972
    Abstract: A VCSEL can include: an elliptical oxide aperture in an oxidized region that is located between an active region and an emission surface, the elliptical aperture having a short radius and a long radius with a radius ratio (short radius)/(long radius) being between 0.6 and 0.8, the VCSEL having a relative intensity noise (RIN) of less than ?140 dB/Hz. The VCSEL can include an elliptical emission aperture having the same dimensions of the elliptical oxide aperture. The VCSEL can include an elliptical contact having an elliptical contact aperture therein, the elliptical contact being around the elliptical emission aperture. The elliptical contact can be C-shaped. The VCSEL can include one or more trenches lateral of the oxidized region, the one or more trenches forming an elliptical shape, wherein the oxidized region has an elliptical shape. The one or more trenches can be trapezoidal shaped trenches.
    Type: Application
    Filed: August 11, 2020
    Publication date: April 1, 2021
    Inventors: Deepa Gazula, Nicolae Chitica, Marek Chacinski, Gary Landry, Jim Tatum
  • Patent number: 10742000
    Abstract: A VCSEL can include: an elliptical oxide aperture in an oxidized region that is located between an active region and an emission surface, the elliptical aperture having a short radius and a long radius with a radius ratio (short radius)/(long radius) being between 0.6 and 0.8, the VCSEL having a relative intensity noise (RIN) of less than ?140 dB/Hz. The VCSEL can include an elliptical emission aperture having the same dimensions of the elliptical oxide aperture. The VCSEL can include an elliptical contact having an elliptical contact aperture therein, the elliptical contact being around the elliptical emission aperture. The elliptical contact can be C-shaped. The VCSEL can include one or more trenches lateral of the oxidized region, the one or more trenches forming an elliptical shape, wherein the oxidized region has an elliptical shape. The one or more trenches can be trapezoidal shaped trenches.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: August 11, 2020
    Assignee: II-VI Delaware Inc.
    Inventors: Deepa Gazula, Nicolae Chitica, Marek Chacinski, Gary Landry, Jim Tatum
  • Publication number: 20190393680
    Abstract: A VCSEL can include: an active region configured to emit light; a blocking region over or under the active region, the blocking region defining a plurality of channels therein; a plurality of conductive channel cores in the plurality of channels of the blocking region, wherein the plurality of conductive channel cores and blocking region form an isolation region; a top electrical contact; and a bottom electrical contact electrically coupled with the top electrical contact through the active region and plurality of conductive channel cores. At least one conductive channel core is a light emitter, and others can be spare light emitters, photodiodes, modulators, and combinations thereof. A waveguide can optically couple two or more of the conductive channel cores. In some aspects, the plurality of conductive channel cores are optically coupled to form a common light emitter that emits light (e.g., single mode) from the plurality of conductive channel cores.
    Type: Application
    Filed: August 27, 2019
    Publication date: December 26, 2019
    Inventors: Jim Tatum, Gary Landry
  • Publication number: 20190341743
    Abstract: A VCSEL can include: an elliptical oxide aperture in an oxidized region that is located between an active region and an emission surface, the elliptical aperture having a short radius and a long radius with a radius ratio (short radius)/(long radius) being between 0.6 and 0.8, the VCSEL having a relative intensity noise (RIN) of less than ?140 dB/Hz. The VCSEL can include an elliptical emission aperture having the same dimensions of the elliptical oxide aperture. The VCSEL can include an elliptical contact having an elliptical contact aperture therein, the elliptical contact being around the elliptical emission aperture. The elliptical contact can be C-shaped. The VCSEL can include one or more trenches lateral of the oxidized region, the one or more trenches forming an elliptical shape, wherein the oxidized region has an elliptical shape. The one or more trenches can be trapezoidal shaped trenches.
    Type: Application
    Filed: May 28, 2019
    Publication date: November 7, 2019
    Inventors: Deepa Gazula, Nicolae Chitica, Marek Chacinski, Gary Landry, Jim Tatum
  • Patent number: 10396529
    Abstract: A VCSEL can include: an active region configured to emit light; a blocking region over or under the active region, the blocking region defining a plurality of channels therein; a plurality of conductive channel cores in the plurality of channels of the blocking region, wherein the plurality of conductive channel cores and blocking region form an isolation region; a top electrical contact; and a bottom electrical contact electrically coupled with the top electrical contact through the active region and plurality of conductive channel cores. At least one conductive channel core is a light emitter, and others can be spare light emitters, photodiodes, modulators, and combinations thereof. A waveguide can optically couple two or more of the conductive channel cores. In some aspects, the plurality of conductive channel cores are optically coupled to form a common light emitter that emits light (e.g., single mode) from the plurality of conductive channel cores.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: August 27, 2019
    Assignee: Finisar Corporation
    Inventors: Jim Tatum, Gary Landry
  • Patent number: 10305254
    Abstract: A VCSEL can include: an elliptical oxide aperture in an oxidized region that is located between an active region and an emission surface, the elliptical aperture having a short radius and a long radius with a radius ratio (short radius)/(long radius) being between 0.6 and 0.8, the VCSEL having a relative intensity noise (RIN) of less than ?140 dB/Hz. The VCSEL can include an elliptical emission aperture having the same dimensions of the elliptical oxide aperture. The VCSEL can include an elliptical contact having an elliptical contact aperture therein, the elliptical contact being around the elliptical emission aperture. The elliptical contact can be C-shaped. The VCSEL can include one or more trenches lateral of the oxidized region, the one or more trenches forming an elliptical shape, wherein the oxidized region has an elliptical shape. The one or more trenches can be trapezoidal shaped trenches.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: May 28, 2019
    Assignee: Finisar Corporation
    Inventors: Deepa Gazula, Nicolae Chitica, Marek Chacinski, Gary Landry, Jim Tatum
  • Publication number: 20190089127
    Abstract: A VCSEL can include: an elliptical oxide aperture in an oxidized region that is located between an active region and an emission surface, the elliptical aperture having a short radius and a long radius with a radius ratio (short radius)/(long radius) being between 0.6 and 0.8, the VCSEL having a relative intensity noise (RIN) of less than ?140 dB/Hz. The VCSEL can include an elliptical emission aperture having the same dimensions of the elliptical oxide aperture. The VCSEL can include an elliptical contact having an elliptical contact aperture therein, the elliptical contact being around the elliptical emission aperture. The elliptical contact can be C-shaped. The VCSEL can include one or more trenches lateral of the oxidized region, the one or more trenches forming an elliptical shape, wherein the oxidized region has an elliptical shape. The one or more trenches can be trapezoidal shaped trenches.
    Type: Application
    Filed: September 18, 2017
    Publication date: March 21, 2019
    Inventors: Deepa Gazula, Nicolae Chitica, Marek Chacinski, Gary Landry, Jim Tatum
  • Publication number: 20180337516
    Abstract: A VCSEL can include: an active region configured to emit light; a blocking region over or under the active region, the blocking region defining a plurality of channels therein; a plurality of conductive channel cores in the plurality of channels of the blocking region, wherein the plurality of conductive channel cores and blocking region form an isolation region; a top electrical contact; and a bottom electrical contact electrically coupled with the top electrical contact through the active region and plurality of conductive channel cores. At least one conductive channel core is a light emitter, and others can be spare light emitters, photodiodes, modulators, and combinations thereof. A waveguide can optically couple two or more of the conductive channel cores. In some aspects, the plurality of conductive channel cores are optically coupled to form a common light emitter that emits light (e.g., single mode) from the plurality of conductive channel cores.
    Type: Application
    Filed: May 22, 2018
    Publication date: November 22, 2018
    Inventors: Jim Tatum, Gary Landry
  • Patent number: 7281861
    Abstract: Methods, apparatuses, and systems for obtaining identification information about fiber optic components and optical assemblies in a non-invasive manner. The present invention includes optical subassemblies (“OSAs”), and optical assemblies incorporating the OSAs where the OSAs comprise means, such as fluorescent material, for producing a fluorescent identification emission having a predetermined spectral signature that provides identification information describing the particular OSA, a component of the OSA, or the optical assembly. The present invention further includes methods for manufacturing fiber optic components to include fluorescent material providing identification information describing the fiber optic component.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: October 16, 2007
    Assignee: Finisar Corporation
    Inventors: Jim Tatum, James K. Guenter
  • Patent number: 7270490
    Abstract: Optical transmission components, systems, and packages where the package includes a common housing containing a laser for transmission of an optical signal, a photodetector optically coupled to the laser for monitoring the laser transmission, and a laser driver electrically coupled to the laser for providing a drive current to the laser. The optical package may be a TO-Can package, the laser may be a vertical cavity surface emitting laser (“VCSEL”), and the laser driver may be an AC modulation laser driver, where a bias current is supplied to the laser from external to the optical transmission component package. An external bias source may be used for providing a bias current to the laser. A temperature sensor located in the laser driver may be used to control operational parameters of the laser.
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: September 18, 2007
    Assignee: Finisar Corporation
    Inventors: Jim Tatum, James K. Guenter
  • Publication number: 20060285800
    Abstract: A system and method for aligning optical components based on coupled optical power and encircled flux is described. In one embodiment of the invention, coupled power and encircled flux is measured corresponding to multiple locations of a first optical component relative to a second optical element. The measured coupled power and encircled flux values are analyzed and an appropriate location of the first optical component relative to the second optical component is selected.
    Type: Application
    Filed: June 21, 2005
    Publication date: December 21, 2006
    Inventors: Jim Tatum, James Guenter, Jack Gilkerson
  • Publication number: 20060045437
    Abstract: Optical transmission components, systems, and packages where the package includes a common housing containing a laser for transmission of an optical signal, a photodetector optically coupled to the laser for monitoring the laser transmission, and a laser driver electrically coupled to the laser for providing a drive current to the laser. The optical package may be a TO-Can package, the laser may be a vertical cavity surface emitting laser (“VCSEL”), and the laser driver may be an AC modulation laser driver, where a bias current is supplied to the laser from external to the optical transmission component package. An external bias source may be used for providing a bias current to the laser. A temperature sensor located in the laser driver may be used to control operational parameters of the laser.
    Type: Application
    Filed: March 17, 2005
    Publication date: March 2, 2006
    Inventors: Jim Tatum, James Guenter
  • Publication number: 20060045433
    Abstract: Methods, apparatuses, and systems for obtaining identification information about fiber optic components and optical assemblies in a non-invasive manner. The present invention includes optical subassemblies (“OSAs”), and optical assemblies incorporating the OSAs where the OSAs comprise means, such as fluorescent material, for producing a fluorescent identification emission having a predetermined spectral signature that provides identification information describing the particular OSA, a component of the OSA, or the optical assembly. The present invention further includes methods for manufacturing fiber optic components to include fluorescent material providing identification information describing the fiber optic component.
    Type: Application
    Filed: March 21, 2005
    Publication date: March 2, 2006
    Inventors: Jim Tatum, James Guenter
  • Publication number: 20060045409
    Abstract: Methods, apparatuses, and systems for obtaining identification information about fiber optic components and optical assemblies in a non-invasive manner. The present invention further includes test devices for receiving a fluorescent emission having a predetermined spectral signature. The spectral signature provides identification information. The identification information can describe a characteristic of an optical communication component or assembly incorporating the optical communication component.
    Type: Application
    Filed: March 21, 2005
    Publication date: March 2, 2006
    Inventors: Jim Tatum, James Guenter
  • Patent number: 6728280
    Abstract: A die having a semiconductor laser driven by a differential drive circuit is provided. The die provides a matched load to the drive circuit by also having a balancing load with an impedance, including both resistive and reactive components substantially identical to the load impedance of the semiconductor laser fabricated on the die. With the balancing load and semiconductor laser pair, the die prevents impedance-mismatch-induced drive problems that occur in high frequency operation, e.g., above about 1 GHz. The semiconductor laser may be a vertical cavity surface emitting laser (VCSEL), for example, as are used in high bandwidth applications like Gigabit Ethernet and Fibre Channel Applications. Furthermore, the die can form an array of balancing and semiconductor laser pairs.
    Type: Grant
    Filed: March 12, 2001
    Date of Patent: April 27, 2004
    Assignee: Honeywell International Inc.
    Inventors: Jim Tatum, James Kenneth Guenter
  • Publication number: 20040076205
    Abstract: A die having a semiconductor laser driven by a differential drive circuit is provided. The die provides a matched load to the drive circuit by also having a balancing load with an impedance, including both resistive and reactive components, substantially identical to the load impedance of the semiconductor laser fabricated on the die. With the balancing load and semiconductor laser pair, the die prevents impedance-mismatch-induced drive problems that occur in high frequency operation, e.g., above about 1 GHz. The semiconductor laser may be a vertical cavity surface emitting laser (VCSEL), for example, as are used in high bandwidth applications like Gigabit Ethernet and Fibre Channel Applications. Furthermore, the die can form an array of balancing and semiconductor laser pairs.
    Type: Application
    Filed: March 12, 2001
    Publication date: April 22, 2004
    Inventors: Jim Tatum, James Kenneth Guenter