Patents by Inventor Jimin Zhang

Jimin Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140004626
    Abstract: Methods for chemical mechanical polishing (CMP) of semiconductor substrates, and more particularly to temperature control during such chemical mechanical polishing are provided. In one aspect, the method comprises polishing the substrate with a polishing surface during a polishing process to remove a portion of the conductive material, repeatedly monitoring a temperature of the polishing surface during the polishing process, and exposing the polishing surface to a rate quench process in response to the monitored temperature so as to achieve a target value for the monitored temperature during the polishing process.
    Type: Application
    Filed: June 30, 2012
    Publication date: January 2, 2014
    Applicant: Applied Materials, Inc.
    Inventors: KUN XU, Jimin Zhang, David H. Mai, Stephen Jew, Shih-Haur Walters Shen, Zhihong Wang, Thomas H. Osterheld, Wen-Chiang Tu, Gary Ka Ho Lam, Tomohiko Kitajima
  • Patent number: 8616935
    Abstract: A polishing method includes simultaneously polishing two substrates, a first substrate and a second substrate, on the same polishing pad. A default overpolishing time is stored and an in-situ monitoring system monitors the two substrates. The in-situ monitoring system further determines a first polishing endpoint time and a second polishing endpoint time of the first and second substrates, respectively. The polishing method further includes calculating an overpolishing stop time where the overpolishing stop time is between the first polishing endpoint time plus the default overpolishing time and the second polishing endpoint time plus the default overpolishing time. Polishing of the first substrate is continued past the first polishing endpoint time and polishing of the second substrate is continued past the second polishing endpoint time. Polishing of both the first substrate and the second substrate is halted simultaneously at the overpolishing stop time.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: December 31, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Jimin Zhang, Ingemar Carlsson, Stephen Jew, Boguslaw A Swedek
  • Publication number: 20130309951
    Abstract: A polishing pad is described that has a polishing layer with a polishing surface, an adhesive layer on a side of the polishing layer opposite the polishing layer, and a solid light-transmitting window extending through and molded to the polishing layer. The window has a top surface coplanar with the polishing surface and a bottom surface coplanar with a lower surface of the adhesive layer. A method of making a polishing pad includes forming an aperture through a polishing layer and an adhesive layer, securing a backing piece to the adhesive layer on a side opposite a polishing surface of the polishing layer, dispensing a liquid polymer into the aperture, and curing the liquid polymer to form a window.
    Type: Application
    Filed: July 23, 2013
    Publication date: November 21, 2013
    Applicant: Applied Materials, Inc.
    Inventors: Dominic J. Benvegnu, Jimin Zhang, Thomas H. Osterheld, Boguslaw A. Swedek
  • Patent number: 8562389
    Abstract: A polishing pad is described that has a polishing layer with a polishing surface, an adhesive layer on a side of the polishing layer opposite the polishing layer, and a solid light-transmitting window extending through and molded to the polishing layer. The window has a top surface coplanar with the polishing surface and a bottom surface coplanar with a lower surface of the adhesive layer. A method of making a polishing pad includes forming an aperture through a polishing layer and an adhesive layer, securing a backing piece to the adhesive layer on a side opposite a polishing surface of the polishing layer, dispensing a liquid polymer into the aperture, and curing the liquid polymer to form a window.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: October 22, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Dominic J. Benvegnu, Jimin Zhang, Thomas H. Osterheld, Boguslaw A. Swedek
  • Patent number: 8517962
    Abstract: A system for treatment includes a focused ultrasound energy source for placement outside a patient, wherein the focused ultrasound energy source is configured to deliver ultrasound energy towards a blood vessel with a surrounding nerve that is a part of an autonomic nervous system inside the patient, and wherein the focused ultrasound energy source is configured to deliver the ultrasound energy from outside the patient to the nerve located inside the patient to treat the nerve.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: August 27, 2013
    Assignee: Kona Medical, Inc.
    Inventors: Michael Gertner, David Perozek, Arash Sabet, Jimin Zhang
  • Patent number: 8475228
    Abstract: A polishing pad has an opaque polishing layer with an aperture therethrough and a polishing surface, and a solid light-transmissive window in the aperture. The solid light-transmissive window includes an outer portion secured to the polishing layer and an inner portion secured to the outer portion. The outer portion has a upper surface recessed relative to the polishing surface, whereas the inner portion has an upper surface that is substantially co-planar with the polishing surface.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: July 2, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Dominic J. Benvegnu, Boguslaw A. Swedek, Jimin Zhang
  • Patent number: 8465342
    Abstract: A polishing system includes a polishing pad with an aperture that extends through all layers of the polishing pad and a light transmissive film positioned on top of a light-generating or light-guiding element of an optical monitoring system.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: June 18, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Jimin Zhang, Alain Duboust, Doyle E. Bennett
  • Patent number: 8388535
    Abstract: An ultrasonic applicator unit (2) is used diagnostically to locate a puncture wound (316) in an artery and then therapeutically to seal the puncture wound with high intensity focused ultrasound (HIFU). A control unit (6) coupled to the applicator unit includes a processor (74) that automates the procedure, controlling various parameters of the diagnostic and therapeutic modes, including the intensity and duration of the ultrasonic energy emitted by the applicator unit. A protective, sterile acoustic shell (4), which is intended to be used with a single patient and then discarded, is slipped over the applicator unit to protect against direct contact between the applicator unit and the patient and to maintain a sterile field at the site of the puncture. The apparatus and method are particularly applicable to sealing a puncture made when inserting a catheter into an artery or other vessel.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: March 5, 2013
    Assignee: Kona Medical, Inc.
    Inventors: Lee Weng, David M. Perozek, Jimin Zhang
  • Patent number: 8372009
    Abstract: A targeting catheter is used to locate an arteriotomy, such as is formed during a femoral artery catheterization procedure. The targeting catheter includes one or more targeting aids, such as an inflatable balloon or sensor (e.g., Doppler or temperature sensor), to locate the arteriotomy. The targeting aid may be positioned at the arteriotomy. An ultrasonic beacon on the catheter may then be located relative to a therapeutic ultrasonic applicator (e.g., by using acoustic time-of-flight) so that the focus of ultrasonic energy from the applicator can be aligned with the arteriotomy.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: February 12, 2013
    Assignee: Kona Medical, Inc.
    Inventors: Charles Emery, Larry Augustine, Robyn Lahman, David M Perozek, Jimin Zhang
  • Publication number: 20130012839
    Abstract: A targeting catheter is used to locate an arteriotomy, such as is formed during a femoral artery catheterization procedure. The targeting catheter includes one or more targeting aids, such as an inflatable balloon or sensor (e.g., Doppler or temperature sensor), to locate the arteriotomy. The targeting aid may be positioned at the arteriotomy. An ultrasonic beacon on the catheter may then be located relative to a therapeutic ultrasonic applicator (e.g., by using acoustic time-of-flight) so that the focus of ultrasonic energy from the applicator can be aligned with the arteriotomy.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Applicant: Kona Medical, Inc.
    Inventors: Charles Emery, Larry Augustine, Robyn Lahman, David M. Perozek, Jimin Zhang
  • Publication number: 20120276814
    Abstract: A computer-implemented method of generating reference spectra includes polishing a plurality of set-up substrates, the plurality of set-up substrates comprising at least three set-up substrates, measuring a sequence of spectra from each of the plurality of set-up substrates during polishing with an in-situ optical monitoring system to provide a plurality of sequences of spectra, generating a plurality of sequences of potential reference spectra from the plurality of sequences of spectra, determining which sequence of potential reference spectra of the plurality of sequences provides a best match to remaining sequences of the plurality of sequences, and storing the sequence of potential reference spectra determined to provide the best match as reference spectra, and selecting and storing the sequence of potential reference spectra.
    Type: Application
    Filed: April 27, 2011
    Publication date: November 1, 2012
    Inventors: Jimin Zhang, Harry Q. Lee, Zhihong Wang, Jeffrey Drue David, Boguslaw A. Swedek, Dominic J. Benvegnu
  • Patent number: 8292691
    Abstract: A method and apparatus for temperature control for a chemical mechanical polishing process is provided. In one embodiment, the method comprises polishing the substrate with a surface of a polishing pad assembly, measuring a real-time temperature of the surface of the polishing pad assembly, determining whether the real-time temperature of the surface of the polishing pad assembly is within a predetermined processing temperature range, and contacting the surface of the polishing pad assembly with a pad conditioner to adjust the temperature of the surface of the polishing pad assembly to fall within the predetermined temperature range.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: October 23, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Kun Xu, Thomas H. Osterheld, Jimin Zhang, Stephen Jew
  • Patent number: 8295967
    Abstract: A computer-implemented method includes polishing substrates simultaneously in a polishing apparatus. Each substrate has a polishing rate independently controllable by an independently variable polishing parameter. Measurement data that varies with the thickness of each of the substrates is acquired from each of the substrates during polishing with an in-situ monitoring system. A projected thickness that each substrate will have at a target time is determined based on the measurement data. The polishing parameter for at least one substrate is adjusted to adjust the polishing rate of the at least one substrate such that the substrates have closer to the same thickness at the target time than without the adjustment.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: October 23, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Jimin Zhang, Thomas H. Osterheld, Ingemar Carlsson, Boguslaw A. Swedek, Stephen Jew
  • Publication number: 20120258649
    Abstract: A polishing system includes a polishing pad with an aperture that extends through all layers of the polishing pad and a light transmissive film positioned on top of a light-generating or light-guiding element of an optical monitoring system.
    Type: Application
    Filed: April 16, 2012
    Publication date: October 11, 2012
    Inventors: Jimin Zhang, Alain Duboust, Doyle E. Bennett
  • Publication number: 20120253239
    Abstract: A system for applying focused ultrasound energy to a nerve surrounding an artery of a patient includes a piezoelectric array comprising a plurality of piezoelectric elements, a controller configured to control at least a subset of the piezoelectric elements so that at least one of the piezoelectric elements in the subset is in a signal transmitting mode, in a signal sensing mode, or both, a first platform on which the piezoelectric elements are coupled and a second platform, wherein the second platform is configured to support at least a part of the patient, a programmable generator configured to generate output power for one or more of the piezoelectric elements, and a programmable processor configured to process a signal sensed by at least one of the piezoelectric elements.
    Type: Application
    Filed: June 14, 2012
    Publication date: October 4, 2012
    Applicant: KONA MEDICAL, INC.
    Inventors: Michael Gertner, David Perozek, Jimin Zhang, Arash Sabet
  • Patent number: 8277398
    Abstract: An ultrasonic applicator unit (2) is used diagnostically to locate a puncture wound (316) in an artery and then therapeutically to seal the puncture wound with high intensity focused ultrasound (HIFU). A control unit (6) coupled to the applicator unit includes a processor (74) that automates the procedure, controlling various parameters of the diagnostic and therapeutic modes, including the intensity and duration of the ultrasonic energy emitted by the applicator unit. A protective, sterile acoustic shell (4), which is intended to be used with a single patient and then discarded, is slipped over the applicator unit to protect against direct contact between the applicator unit and the patient and to maintain a sterile field at the site of the puncture. The apparatus and method are particularly applicable to sealing a puncture made when inserting a catheter into an artery or other vessel.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: October 2, 2012
    Assignee: Kona Medical, Inc.
    Inventors: Lee Weng, David M. Perozek, Jimin Zhang
  • Publication number: 20120109018
    Abstract: A system for applying high intensity ultrasound energy to a nerve surrounding an artery of a patient includes a piezoelectric array comprising a plurality of ultrasound elements, a controller configured to individually control a phasing of each of the ultrasound elements, a platform on which the ultrasound elements are coupled, wherein the platform is configured to support at least a part of the patient, a programmable generator configured to generate an output power for at least one of the ultrasound elements, and a programmable processor configured to process a signal transmitted from one of the ultrasound elements and reflected back from tissue, and determine a tissue characteristic based on the reflected signal.
    Type: Application
    Filed: April 20, 2011
    Publication date: May 3, 2012
    Applicant: KONA MEDICAL, INC.
    Inventors: Michael Gertner, David Perozek, Jimin Zhang, Arash Sabet
  • Publication number: 20120109023
    Abstract: Systems and methods for maintaining the alignment of a therapeutic ultrasound applicator to a target site are described. Overlapping ultrasound signals are sent to a target tissue site and the echo detected. An algorithm is described for detecting tissue movement relative to the applicator based on comparison of the echo with a previously stored echo.
    Type: Application
    Filed: January 5, 2012
    Publication date: May 3, 2012
    Applicant: Kona Medical, Inc.
    Inventors: Charles Emery, Larry Augustine, Robyn Lahman, David M. Perozek, Jimin Zhang
  • Publication number: 20120108966
    Abstract: Methods for applying heat to a region proximate a blood vessel are disclosed. In one embodiment, a method can include generating an imaging ultrasound beam adapted to image a blood vessel target and receiving a reflection of the imaging ultrasound beam. The method can also include producing an output signal in response to the reflection of the imaging ultrasonic beam and processing the output signal to identify a location of a treatment zone proximate an outer wall of the blood vessel. Therapeutic energy can be applied to the treatment zone. In some embodiments, the therapeutic ultrasound energy beam can be moved to over-scan the treatment zone. Other methods are also disclosed.
    Type: Application
    Filed: January 5, 2012
    Publication date: May 3, 2012
    Applicant: Kona Medical, Inc.
    Inventors: Lee Weng, David M. Perozek, Jimin Zhang
  • Patent number: 8167805
    Abstract: Systems and methods for maintaining the alignment of a therapeutic ultrasound applicator to a target site are described. Overlapping ultrasound signals are sent to a target tissue site and the echo detected. An algorithm is described for detecting tissue movement relative to the applicator based on comparison of the echo with a previously stored echo.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: May 1, 2012
    Assignee: Kona Medical, Inc.
    Inventors: Charles Emery, Larry Augustine, Robyn Lahman, David M. Perozek, Jimin Zhang