Patents by Inventor Jinbo Ma

Jinbo Ma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240132488
    Abstract: The present invention belongs to the medical field, and relates to novel ?-lactamase inhibitors, for the treatment of bacterial infections in combination with ?-lactam antibiotics, including infection caused by drug resistant organisms and especially multi-drug resistant organisms. The present invention includes compounds according to formula (I): or pharmaceutically acceptable salts thereof, wherein M and R are as defined herein.
    Type: Application
    Filed: March 4, 2022
    Publication date: April 25, 2024
    Inventors: Zhixiang YANG, Haikang YANG, Jinbo JI, Lijuan ZHAI, Jian SUN, Jingwen JI, Lili HE, Dong TANG, Zafar IQBAL, Yuanbai LIU, Yangxiu MU, Xueqin MA, Jianqiang YU
  • Patent number: 11962176
    Abstract: Example devices are described. One example device includes a battery. The battery includes a battery charging port, a battery discharging port, a battery negative port, a protection integrated circuit, a control switch, and an electrochemical cell. The battery charging port and the battery discharging port are ports independent of each other. The battery charging port is connected to a first electrode of the electrochemical cell, and a second electrode of the electrochemical cell is connected to a first end of the control switch, and a second end of the control switch is connected to the battery negative port. The protection integrated circuit is connected in parallel to electrodes of the electrochemical cell, and the protection integrated circuit is further connected to a third end of the control switch. The battery discharging port is connected to the first electrode of the electrochemical cell.
    Type: Grant
    Filed: August 3, 2022
    Date of Patent: April 16, 2024
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Xinyu Liu, Pinghua Wang, Ce Liu, Yanding Liu, Jinbo Ma
  • Patent number: 11919422
    Abstract: A vehicle braking energy recovering method includes obtaining current location information of a vehicle, determining a current road scenario based on the current location information of the vehicle, determining the current road scenario based on a mapping relationship between a road scenario and a weight, determining a safe distance and a safe speed of the vehicle based on the weight, determining a target torque based on the safe distance and the safe speed of the vehicle, and controlling, based on the target torque, a motor of the vehicle to recover braking energy.
    Type: Grant
    Filed: February 16, 2022
    Date of Patent: March 5, 2024
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Zuqi Liu, Jianfeng Zheng, Jinbo Ma, Jiajun Huang, Wei Zhang
  • Patent number: 11862773
    Abstract: The present disclosure provides a charging method and a terminal. The method includes: automatically learning, by the terminal, historical data by using a machine learning algorithm, to establish a habit model of a user, and matching a current time with the usage habit model of the user to determine a current charging intention of the user, so as to determine a charging mode according to the charging intention. By means of the technical solutions, a charging requirement of a user can be effectively identified, and on-demand charging can be implemented. This improves user experience while avoiding a battery life decrease caused by frequent fast charging.
    Type: Grant
    Filed: December 21, 2022
    Date of Patent: January 2, 2024
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Dawei Huo, Jie Ding, Pinghua Wang, Hui Li, Jinbo Ma
  • Publication number: 20230198032
    Abstract: The present disclosure provides a charging method and a terminal. The method includes: automatically learning, by the terminal, historical data by using a machine learning algorithm, to establish a habit model of a user, and matching a current time with the usage habit model of the user to determine a current charging intention of the user, so as to determine a charging mode according to the charging intention.. By means of the technical solutions, a charging requirement of a user can be effectively identified, and on-demand charging can be implemented. This improves user experience while avoiding a battery life decrease caused by frequent fast charging.
    Type: Application
    Filed: December 21, 2022
    Publication date: June 22, 2023
    Inventors: Dawei HUO, Jie DING, Pinghua WANG, Hui LI, Jinbo MA
  • Publication number: 20230155392
    Abstract: A terminal and a fast charging method to fast charge the terminal, where the method includes sending, by the terminal, instruction information to a charger connected to the terminal in order to instruct the charger to adjust an output voltage and an output current, converting, by the terminal, the output voltage of the charger into 1/K times the output voltage, and converting the output current of the charger into K times the output current such that a charging circuit between two sides of a battery charges the battery with the 1/K times the output voltage and the K times the output current, where K is a conversion coefficient of a conversion circuit with a fixed conversion ratio in the terminal and is a constant value, and K is any real number greater than one.
    Type: Application
    Filed: January 18, 2023
    Publication date: May 18, 2023
    Inventors: Xujun Liu, Ce Liu, Yanding Liu, Jinbo Ma, Pinghua Wang
  • Patent number: 11581745
    Abstract: A terminal and a fast charging method includes sending, by the terminal, instruction information to a charger connected to the terminal in order to instruct the charger to adjust an output voltage and an output current, converting, by the terminal, the output voltage of the charger into 1/K times the output voltage, and converting the output current of the charger into K times the output current such that a charging circuit between two sides of a battery charges the battery with the 1/K times the output voltage and the K times the output current, where K is a conversion coefficient of a conversion circuit with a fixed conversion ratio in the terminal and is a constant value, and K is any real number greater than one.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: February 14, 2023
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Xujun Liu, Ce Liu, Yanding Liu, Jinbo Ma, Pinghua Wang
  • Publication number: 20230018211
    Abstract: A charging method, a terminal, a charger, and a system, includes: obtaining, by a terminal, a charging mode supported by a charger connected to the terminal; when the charging mode supported by the charger includes an open-loop fast charging mode, detecting, by the terminal, whether both the terminal and the charger are in an open loop state; when both the terminal and the charger are in the open loop state, sending, by the terminal, an open-loop fast charging instruction to the charger; and receiving, by the terminal, a voltage and a current that are transmitted by the charger according to the open-loop fast charging instruction, and performing charging in the open-loop fast charging mode. When determining that the charger supports charging in the open-loop fast charging mode, the terminal is adjusted to the open loop state to perform charging, so as to shorten a charging time and improve user experience.
    Type: Application
    Filed: June 1, 2022
    Publication date: January 19, 2023
    Inventors: Ce LIU, Xujun LIU, Yanding LIU, Yunfeng LIU, Jinbo MA
  • Patent number: 11545703
    Abstract: The present disclosure provides a charging method and a terminal. The method includes: automatically learning, by the terminal, historical data by using a machine learning algorithm, to establish a habit model of a user, and matching a current time with the usage habit model of the user to determine a current charging intention of the user, so as to determine a charging mode according to the charging intention. By means of the technical solutions, a charging requirement of a user can be effectively identified, and on-demand charging can be implemented. This improves user experience while avoiding a battery life decrease caused by frequent fast charging.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: January 3, 2023
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Dawei Huo, Jie Ding, Pinghua Wang, Hui Li, Jinbo Ma
  • Publication number: 20220376521
    Abstract: Example devices are described. One example device includes a battery. The battery includes a battery charging port, a battery discharging port, a battery negative port, a protection integrated circuit, a control switch, and an electrochemical cell. The battery charging port and the battery discharging port are ports independent of each other. The battery charging port is connected to a first electrode of the electrochemical cell, and a second electrode of the electrochemical cell is connected to a first end of the control switch, and a second end of the control switch is connected to the battery negative port. The protection integrated circuit is connected in parallel to electrodes of the electrochemical cell, and the protection integrated circuit is further connected to a third end of the control switch. The battery discharging port is connected to the first electrode of the electrochemical cell.
    Type: Application
    Filed: August 3, 2022
    Publication date: November 24, 2022
    Inventors: Xinyu LIU, Pinghua WANG, Ce LIU, Yanding LIU, Jinbo MA
  • Patent number: 11444470
    Abstract: Example batteries, terminals, and charging systems are described. One example battery includes a battery charging port, a battery discharging port, a battery negative port, an overcurrent protection element, a protection integrated circuit, a control switch, and an electrochemical cell. The battery charging port is connected to a positive electrode of the electrochemical cell. The control switch is connected in series between a negative electrode of the electrochemical cell and the battery negative port. The protection integrated circuit is connected in parallel to two ends of the electrochemical cell. The protection integrated circuit is further connected to the control switch so as to send a control signal to the control switch. In addition, the overcurrent protection element is connected in series between the battery discharging port and the positive electrode of the electrochemical cell. The battery provided in the present application has both a charging path and a discharging path.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: September 13, 2022
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Xinyu Liu, Pinghua Wang, Ce Liu, Yanding Liu, Jinbo Ma
  • Patent number: 11362527
    Abstract: A charging method, a terminal, a charger, and a system, includes: obtaining, by a terminal, a charging mode supported by a charger connected to the terminal; when the charging mode supported by the charger includes an open-loop fast charging mode, detecting, by the terminal, whether both the terminal and the charger are in an open loop state; when both the terminal and the charger are in the open loop state, sending, by the terminal, an open-loop fast charging instruction to the charger; and receiving, by the terminal, a voltage and a current that are transmitted by the charger according to the open-loop fast charging instruction, and performing charging in the open-loop fast charging mode. When determining that the charger supports charging in the open-loop fast charging mode, the terminal is adjusted to the open loop state to perform charging, so as to shorten a charging time and improve user experience.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: June 14, 2022
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Ce Liu, Xujun Liu, Yanding Liu, Yunfeng Liu, Jinbo Ma
  • Publication number: 20220169119
    Abstract: A vehicle braking energy recovering method includes obtaining current location information of a vehicle, determining a current road scenario based on the current location information of the vehicle, determining the current road scenario based on a mapping relationship between a road scenario and a weight, determining a safe distance and a safe speed of the vehicle based on the weight, determining a target torque based on the safe distance and the safe speed of the vehicle, and controlling, based on the target torque, a motor of the vehicle to recover braking energy.
    Type: Application
    Filed: February 16, 2022
    Publication date: June 2, 2022
    Inventors: Zuqi Liu, Jianfeng Zheng, Jinbo Ma, Jiajun Huang, Wei Zhang
  • Patent number: 11260756
    Abstract: A vehicle braking energy recovering method includes obtaining current location information of a vehicle, determining a current road scenario based on the current location information of the vehicle, determining the current road scenario based on a mapping relationship between a road scenario and a weight, determining a safe distance and a safe speed of the vehicle based on the weight, determining a target torque based on the safe distance and the safe speed of the vehicle, and controlling, based on the target torque, a motor of the vehicle to recover braking energy.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: March 1, 2022
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Zuqi Liu, Jianfeng Zheng, Jinbo Ma, Jiajun Huang, Wei Zhang
  • Publication number: 20200350772
    Abstract: Example batteries, terminals, and charging systems are described. One example battery includes a battery charging port, a battery discharging port, a battery negative port, an overcurrent protection element, a protection integrated circuit, a control switch, and an electrochemical cell. The battery charging port is connected to a positive electrode of the electrochemical cell. The control switch is connected in series between a negative electrode of the electrochemical cell and the battery negative port. The protection integrated circuit is connected in parallel to two ends of the electrochemical cell. The protection integrated circuit is further connected to the control switch so as to send a control signal to the control switch. In addition, the overcurrent protection element is connected in series between the battery discharging port and the positive electrode of the electrochemical cell. The battery provided in the present application has both a charging path and a discharging path.
    Type: Application
    Filed: July 22, 2020
    Publication date: November 5, 2020
    Inventors: Xinyu LIU, Pinghua WANG, Ce LIU, Yanding LIU, Jinbo MA
  • Publication number: 20200343756
    Abstract: A terminal and a fast charging method includes sending, by the terminal, instruction information to a charger connected to the terminal in order to instruct the charger to adjust an output voltage and an output current, converting, by the terminal, the output voltage of the charger into 1/K times the output voltage, and converting the output current of the charger into K times the output current such that a charging circuit between two sides of a battery charges the battery with the 1/K times the output voltage and the K times the output current, where K is a conversion coefficient of a conversion circuit with a fixed conversion ratio in the terminal and is a constant value, and K is any real number greater than one.
    Type: Application
    Filed: July 9, 2020
    Publication date: October 29, 2020
    Inventors: Xujun Liu, Ce Liu, Yanding Liu, Jinbo Ma, Pinghua Wang
  • Patent number: 10819127
    Abstract: A charging circuit in a terminal, or a charging system, is respectively coupled to a charger, a terminal load, and a battery. The charging circuit includes a first adjustment circuit, a current detection circuit, a voltage detection circuit, and a control circuit. A first end of the first adjustment circuit is coupled to the charger, a second end of the first adjustment circuit is further coupled to the terminal load, a third end of the first adjustment circuit is coupled to the control circuit, and a second end of the current detection circuit is coupled to a positive electrode of the battery.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: October 27, 2020
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Xinyu Liu, Yanding Liu, Ce Liu, Pinghua Wang, Jinbo Ma
  • Patent number: 10797493
    Abstract: An example battery, a terminal, or a charging system can include a battery charging port, a battery discharging port, a battery negative port, an overcurrent protection element, a protection integrated circuit, a control switch, and an electrochemical cell. The battery charging port is connected to a positive electrode of the electrochemical cell, the control switch is connected in series between a negative electrode of the electrochemical cell and the battery negative port, the protection integrated circuit is connected in parallel to two ends of the electrochemical cell, and the protection integrated circuit is further connected to the control switch, so as to send a control signal to the control switch. In addition, the overcurrent protection element is connected in series between the battery discharging port and the positive electrode of the electrochemical cell.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: October 6, 2020
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Xinyu Liu, Pinghua Wang, Ce Liu, Yanding Liu, Jinbo Ma
  • Patent number: 10749357
    Abstract: An example battery, a terminal, or a charging system can include a battery charging port, a battery discharging port, a battery negative port, an overcurrent protection element, a protection integrated circuit, a control switch, and an electrochemical cell. The battery charging port is connected to a positive electrode of the electrochemical cell, the control switch is connected in series between a negative electrode of the electrochemical cell and the battery negative port, the protection integrated circuit is connected in parallel to two ends of the electrochemical cell, and the protection integrated circuit is further connected to the control switch, so as to send a control signal to the control switch. In addition, the overcurrent protection element is connected in series between the battery discharging port and the positive electrode of the electrochemical cell.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: August 18, 2020
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Xinyu Liu, Pinghua Wang, Ce Liu, Yanding Liu, Jinbo Ma
  • Patent number: 10734830
    Abstract: A terminal and a fast charging method to fast charge the terminal, where the method includes sending, by the terminal, instruction information to a charger connected to the terminal in order to instruct the charger to adjust an output voltage and an output current, converting, by the terminal, the output voltage of the charger into 1/K times the output voltage, and converting the output current of the charger into K times the output current such that a charging circuit between two sides of a battery charges the battery with the 1/K times the output voltage and the K times the output current, where K is a conversion coefficient of a conversion circuit with a fixed conversion ratio in the terminal and is a constant value, and K is any real number greater than one.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: August 4, 2020
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Xujun Liu, Ce Liu, Yanding Liu, Jinbo Ma, Pinghua Wang