Patents by Inventor Jin-Gyun Chung

Jin-Gyun Chung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7912891
    Abstract: Provided are a high speed and low power fixed-point multiplier and method thereof. The multiplier includes: a partial product calculation unit for dividing input data into a plurality of bit groups, each bit group having a predetermined number of bits, generating partial products by independently multiplying a fixed coefficient for each bit group, and summing partial products included in a corresponding bit group, to thereby generate a summed partial products; and an adding unit for adding the summed partial products of each bit group generated from the partial product calculation unit.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: March 22, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sang-In Cho, Cheol-Ho Shin, Kyu-Min Kang, Sung-Woo Choi, Sang-Sung Choi, Jin-Gyun Chung, Yong-Eun Kim
  • Patent number: 7334200
    Abstract: A low-error fixed-width multiplier receives a W-bit input and produces a W-bit product. In an embodiment, a multiplier (Y) is encoded using modified Booth coding. The encoded multiplier (Y) and a multiplicand (X) are processed together to generate partial products. The partial products are accumulated to generate a product (P). To compensate for the quantization error, Booth encoder outputs are used for the generation of error compensation bias. The truncated bits are divided into two groups, a major least significant bit group and a minor least significant bit group, depending upon their effects on the quantization error. Different error compensation methods are applied to each group.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: February 19, 2008
    Assignee: Broadcom Corporation
    Inventors: Keshab K. Parhi, Jin-Gyun Chung, Kwang-Cheol Lee, Kyung-Ju Cho
  • Publication number: 20070180015
    Abstract: Provided are a high speed and low power fixed-point multiplier and method thereof. The multiplier includes: a partial product calculation unit for dividing input data into a plurality of bit groups, each bit group having a predetermined number of bits, generating partial products by independently multiplying a fixed coefficient for each bit group, and summing partial products included in a corresponding bit group, to thereby generate a summed partial products; and an adding unit for adding the summed partial products of each bit group generated from the partial product calculation unit.
    Type: Application
    Filed: December 8, 2006
    Publication date: August 2, 2007
    Inventors: Sang-In Cho, Cheol-Ho Shin, Kyu-Min Kang, Sung-Woo Choi, Sang-Sung Choi, Jin-Gyun Chung, Yong-Eun Kim
  • Patent number: 7080115
    Abstract: An error compensation bias circuit and method for a canonic signed digit (CSD) fixed-width multiplier that receives a W-bit input and produces a W-bit product. Truncated bits of the multiplier are divided into two groups (a major group and a minor group) depending upon their effects on quantization error. An error compensation bias is expressed in terms of the truncated bits in the major group. The effects of the remaining truncated bits in the minor group are taken into account by a probabilistic estimation. The error compensation bias circuit typically requires only a few logic gates to implement.
    Type: Grant
    Filed: April 23, 2003
    Date of Patent: July 18, 2006
    Assignee: Broadcom Corporation
    Inventors: Keshab K Parhi, Jin-Gyun Chung, Sang-Min Kim
  • Patent number: 6978426
    Abstract: A low-error fixed-width multiplier receives a W-bit input and produces a W-bit product. In an embodiment, a multiplier (Y) is encoded using modified Booth coding. The encoded multiplier (Y) and a multiplicand (X) are processed together to generate partial products. The partial products are accumulated to generate a product (P). To compensate for the quantization error, Booth encoder outputs are used for the generation of error compensation bias. The truncated bits are divided into two groups, a major least significant bit group and a minor least significant bit group, depending upon their effects on the quantization error. Different error compensation methods are applied to each group.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: December 20, 2005
    Assignee: Broadcom Corporation
    Inventors: Keshab K. Parhi, Jin-Gyun Chung, Kwang-Cheol Lee, Kyung-Ju Cho
  • Publication number: 20050144217
    Abstract: A low-error fixed-width multiplier receives a W-bit input and produces a W-bit product. In an embodiment, a multiplier (Y) is encoded using modified Booth coding. The encoded multiplier (Y) and a multiplicand (X) are processed together to generate partial products. The partial products are accumulated to generate a product (P). To compensate for the quantization error, Booth encoder outputs are used for the generation of error compensation bias. The truncated bits are divided into two groups, a major least significant bit group and a minor least significant bit group, depending upon their effects on the quantization error. Different error compensation methods are applied to each group.
    Type: Application
    Filed: February 22, 2005
    Publication date: June 30, 2005
    Applicant: Broadcom Corporation
    Inventors: Keshab Parhi, Jin-Gyun Chung, Kwang-Cheol Lee, Kyung-Ju Cho
  • Publication number: 20030220956
    Abstract: An error compensation bias circuit and method for a canonic signed digit (CSD) fixed-width multiplier that receives a W-bit input and produces a W-bit product. Truncated bits of the multiplier are divided into two groups (a major group and a minor group) depending upon their effects on quantization error. An error compensation bias is expressed in terms of the truncated bits in the major group. The effects of the remaining truncated bits in the minor group are taken into account by a probabilistic estimation. The error compensation bias circuit typically requires only a few logic gates to implement.
    Type: Application
    Filed: April 23, 2003
    Publication date: November 27, 2003
    Applicant: Broadcom Corporation
    Inventors: Keshab K. Parhi, Jin-Gyun Chung, Sang-Min Kim
  • Publication number: 20030196177
    Abstract: A low-error fixed-width multiplier receives a W-bit input and produces a W-bit product. In an embodiment, a multiplier (Y) is encoded using modified Booth coding. The encoded multiplier (Y) and a multiplicand (X) are processed together to generate partial products. The partial products are accumulated to generate a product (P). To compensate for the quantization error, Booth encoder outputs are used for the generation of error compensation bias. The truncated bits are divided into two groups, a major least significant bit group and a minor least significant bit group, depending upon their effects on the quantization error. Different error compensation methods are applied to each group.
    Type: Application
    Filed: August 30, 2002
    Publication date: October 16, 2003
    Applicant: Broadcom Corporation
    Inventors: Keshab K. Parhi, Jin-Gyun Chung, Kwang-Cheol Lee, Kyung-Ju Cho
  • Patent number: 5859370
    Abstract: The present invention is a method of detecting and sizing of a small crack in a root between two crests in stud bolt threads. The key idea is from the fact that the Rayleigh wave is detected between large regularly spaced pulses from the thread. The delay time is the same as the propagation delay time of the slow Rayleigh wave and is proportional to the size of the crack. To efficiently detect the slow Rayleigh wave, three methods based on digital signal processing are proposed; modified wave shaping, dynamic predictive deconvolution, and dynamic predictive deconvolution, and dynamic predictive deconvolution combined with wave shaping.
    Type: Grant
    Filed: June 27, 1997
    Date of Patent: January 12, 1999
    Assignees: Dong-man Suh, Keun-Sang Lim
    Inventors: Dong-man Suh, Whan-woo Kim, Jin-gyun Chung