Patents by Inventor Jin LIAN

Jin LIAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240027913
    Abstract: A metrology system (400) includes a multi-source radiation system. The multi-source radiation system includes a waveguide device (502) and the multi-source radiation system is configured to generate one or more beams of radiation. The metrology system (400) further includes a coherence adjuster (500) including a multimode waveguide device (504). The multimode waveguide device (504) includes an input configured to receive the one or more beams of radiation from the multi-source radiation system (514) and an output (518) configured to output a coherence adjusted beam of radiation for irradiating a target (418). The metrology system (400) further includes an actuator (506) coupled to the waveguide device (502) and configured to actuate the waveguide device (502) so as to change an impingement characteristic of the one or more beams of radiation at the input of the multimode waveguide device (504).
    Type: Application
    Filed: December 2, 2021
    Publication date: January 25, 2024
    Applicants: ASML Netherlands B.V., ASML Holding N.V.
    Inventors: Sergei SOKOLOV, Simon Reinald HUISMAN, Jin LIAN, Sebastianus Adrianus GOORDEN, Muhsin ERALP, Henricus Petrus Maria PELLEMANS, Justin Lloyd KREUZER
  • Publication number: 20230305407
    Abstract: Disclosed is a method for focus measurement of a lithographic process. The method comprises receiving a substrate on which a metrology pattern has been printed with a lithographic apparatus with an illumination pupil, illuminating the metrology pattern with a metrology tool to measure a signal based on radiation scattered by the metrology pattern, and determining or monitoring a focus of the lithographic process based on the measured signal. Position of at least part of the metrology pattern is focus dependent. At least part of the metrology pattern has been printed by the lithography apparatus with an angular asymmetric illumination pupil.
    Type: Application
    Filed: July 6, 2021
    Publication date: September 28, 2023
    Applicant: ASML Netherlands B.V.
    Inventors: Fei LIU, Jin LIAN, Zhuangxiong HUANG, Laurentius Cornelius DE WINTER, Frank STAALS
  • Publication number: 20230229094
    Abstract: Disclosed is an illumination arrangement for spectrally shaping a broadband illumination beam to obtain a spectrally shaped illumination beam. The illumination arrangement comprises a beam dispersing element for dispersing the broadband illumination beam and a spatial light modulator for spatially modulating the broadband illumination beam subsequent to being dispersed. The illumination arrangement further comprises at least one of a beam expanding element for expanding said broadband illumination beam in at least one direction, located between an input of the illumination arrangement and the spatial light modulator; and a lens array, each lens of which for directing a respective wavelength band of the broadband illumination beam subsequent to being dispersed onto a respective region of the spatial light modulator.
    Type: Application
    Filed: January 6, 2023
    Publication date: July 20, 2023
    Applicant: ASML Netherlands B.V.
    Inventors: Simon Reinald HUISMAN, Arjan Johannes Anton BEUKMAN, Arie Jeffrey DEN BOEF, Sebastianus Adrianus GOORDEN, Nitish KUMAR, Jin LIAN, Zili ZHOU
  • Publication number: 20230176491
    Abstract: Disclosed is a substrate and associated patterning device. The substrate comprises at least one target arrangement suitable for metrology of a lithographic process, the target arrangement comprising at least one pair of similar target regions which are arranged such that the target arrangement is, or at least the target regions for measurement in a single direction together are, centrosymmetric. A metrology method is also disclosed for measuring the substrate. A metrology method is also disclosed comprising which comprises measuring such a target arrangement and determining a value for a parameter of interest from the scattered radiation, while correcting for distortion of the metrology apparatus used.
    Type: Application
    Filed: April 21, 2021
    Publication date: June 8, 2023
    Applicant: ASML Netherlands B.V.
    Inventors: Olger Victor ZWIER, Maurits VAN DER SCHAAR, Hilko Dirk BOS, Hans VAN DER LAAN, S.M. Masudur Rahman AL ARIF, Henricus Wilhelmus Maria Van Buel, Armand Eugene Albert KOOLEN, Victor CALADO, Kaustuve BHATTACHARYYA, Jin LIAN, Sebastianus Adrianus GOORDEN, Hui Quan LIM
  • Patent number: 11099489
    Abstract: The disclosure relates to measuring a parameter of a lithographic process and a metrology apparatus. In one arrangement, radiation from a radiation source is modified and used to illuminate a target formed on a substrate using the lithographic process. Radiation scattered from a target is detected and analyzing to determine the parameter. The modification of the radiation comprises modifying a wavelength spectrum of the radiation to have a local minimum between a global maximum and a local maximum, wherein the power spectral density of the radiation at the local minimum is less than 20% of the power spectral density of the radiation at the global maximum and the power spectral density of the radiation at the local maximum is at least 50% of the power spectral density of the radiation at the global maximum.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: August 24, 2021
    Assignee: ASML Netherlands B.V.
    Inventors: Hugo Augustinus Joseph Cramer, Hilko Dirk Bos, Erik Johan Koop, Armand Eugene Albert Koolen, Han-Kwang Nienhuys, Alessandro Polo, Jin Lian, Arie Jeffrey Den Boef
  • Patent number: 11042100
    Abstract: The disclosure relates to measuring a target. In one arrangement, a measurement apparatus is provided that has an optical system configured to illuminate a target with radiation and direct reflected radiation from the target to a sensor. A programmable spatial light modulator in a pupil plane of the optical system is programmed to redirect light in each of a plurality of pupil plane zones in such a way as to form a corresponding plurality of images at different locations on the sensor. Each image is formed by radiation passing through a different respective one of the pupil plane zones.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: June 22, 2021
    Assignee: ASML Netherlands B.V.
    Inventors: Jin Lian, Zili Zhou, Duygu Akbulut, Sergey Tarabrin
  • Patent number: 10908514
    Abstract: A metrology apparatus is disclosed that has an optical system to focus radiation onto a structure and directs redirected radiation from the structure to a detection system. The optical system applies a plurality of different offsets of an optical characteristic to radiation before and/or after redirected by the structure, such that a corresponding plurality of different offsets are provided to redirected radiation derived from a first point of a pupil plane field distribution relative to redirected radiation derived from a second point of the pupil plane field distribution. The detection system detects a corresponding plurality of radiation intensities resulting from interference between the redirected radiation derived from the first point of the pupil plane field distribution and the redirected radiation derived from the second point of the pupil plane field distribution. Each radiation intensity corresponds to a different one of the plurality of different offsets.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: February 2, 2021
    Assignee: ASML Netherlands B.V.
    Inventors: Janneke Ravensbergen, Duygu Akbulut, Nitesh Pandey, Jin Lian
  • Patent number: 10831107
    Abstract: Disclosed method of measuring a parameter relating to a structure formed using a lithographic process, and more specifically focus or line edge roughness. The method includes measuring a structure having a dimension, e.g., a critical dimension, which is sufficiently large to enable radiation diffracted by at least one edge of said structure to be (e.g., individually) optically resolved. The method comprises obtaining an intensity metric from an image of the at least one edge and determining a value for said parameter based on the intensity metric.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: November 10, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Sergei Sokolov, Jin Lian
  • Patent number: 10788758
    Abstract: Methods and apparatus for measuring a parameter of interest of a target structure formed on substrate are disclosed. In one arrangement, the target structure comprises a first sub-target and a second sub-target. The first sub-target comprises a first bias and the second sub-target comprises a second bias. The method comprises determining the parameter of interest using a detected or estimated reference property of radiation at a first wavelength scattered from the first sub-target and a detected or estimated reference property of radiation at a second wavelength scattered from the second sub-target. The first wavelength is different to the second wavelength.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: September 29, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Jin Lian, Nitesh Pandey
  • Patent number: 10705437
    Abstract: Disclosed is a method, and associated apparatuses, for measuring a parameter of interest relating to a structure having at least two layers. The method comprises illuminating the structure with measurement radiation and detecting scattered radiation having been scattered by said structure. The scattered radiation comprises normal and complementary higher diffraction orders. A scatterometry model which relates a scattered radiation parameter to at least a parameter of interest and an asymmetry model which relates the scattered radiation parameter to at least one asymmetry parameter are defined, the asymmetry parameter relating to one or more measurement system errors and/or an asymmetry in the target other than a misalignment between the two layers. A combination of the scatterometry model and asymmetry model is used to determine a system of equations, and the system of equations is then solved for the parameter of interest.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: July 7, 2020
    Assignee: ASML Netherlands B.V
    Inventors: Narjes Javaheri, Mohammadreza Hajiahmadi, Murat Bozkurt, Alberto Da Costa Assafrao, Marc Johannes Noot, Simon Gijsbert Josephus Mathijssen, Jin Lian
  • Publication number: 20200192231
    Abstract: The disclosure relates to measuring a parameter of a lithographic process and a metrology apparatus. In one arrangement, radiation from a radiation source is modified and used to illuminate a target formed on a substrate using the lithographic process. Radiation scattered from a target is detected and analyzing to determine the parameter. The modification of the radiation comprises modifying a wavelength spectrum of the radiation to have a local minimum between a global maximum and a local maximum, wherein the power spectral density of the radiation at the local minimum is less than 20% of the power spectral density of the radiation at the global maximum and the power spectral density of the radiation at the local maximum is at least 50% of the power spectral density of the radiation at the global maximum.
    Type: Application
    Filed: December 12, 2019
    Publication date: June 18, 2020
    Applicant: ASML Netherlands B.V.
    Inventors: Hugo Augustinus Joseph CRAMER, Hiiko Dirk BOS, Erik Johan KOOP, Armand Eugene Albert KOOLEN, Han-Kwang NIENHUYS, Alessandro POLO, Jin LIAN, Arie Jeffrey DEN BOEF
  • Patent number: 10656534
    Abstract: Methods and apparatuses for measuring a plurality of structures formed on a substrate are disclosed. In one arrangement, a method includes obtaining data from a first measurement process. The first measurement process including individually measuring each of the plurality of structures to measure a first property of the structure. A second measurement process is used to measure a second property of each of the plurality of structures. The second measurement process includes illuminating each structure with radiation having a radiation property that is individually selected for that structure using the measured first property for the structure.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: May 19, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Nitesh Pandey, Jin Lian, Samee Ur-Rehman, Martin Jacobus Johan Jak
  • Publication number: 20200089125
    Abstract: Disclosed method of measuring a parameter relating to a structure formed using a lithographic process, and more specifically focus or line edge roughness. The method includes measuring a structure having a dimension, e.g., a critical dimension, which is sufficiently large to enable radiation diffracted by at least one edge of said structure to be (e.g., individually) optically resolved. The method comprises obtaining an intensity metric from an image of the at least one edge and determining a value for said parameter based on the intensity metric.
    Type: Application
    Filed: August 30, 2019
    Publication date: March 19, 2020
    Applicant: ASML Netherlands B.V.
    Inventors: Sergei SOKOLOV, Jin Lian
  • Publication number: 20200004165
    Abstract: A metrology apparatus is disclosed that has an optical system to focus radiation onto a structure and directs redirected radiation from the structure to a detection system. The optical system applies a plurality of different offsets of an optical characteristic to radiation before and/or after redirected by the structure, such that a corresponding plurality of different offsets are provided to redirected radiation derived from a first point of a pupil plane field distribution relative to redirected radiation derived from a second point of the pupil plane field distribution. The detection system detects a corresponding plurality of radiation intensities resulting from interference between the redirected radiation derived from the first point of the pupil plane field distribution and the redirected radiation derived from the second point of the pupil plane field distribution. Each radiation intensity corresponds to a different one of the plurality of different offsets.
    Type: Application
    Filed: September 6, 2019
    Publication date: January 2, 2020
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Janneke RAVENSBERGEN, Duygu AKBULUT, Nitesh PANDEY, Jin LIAN
  • Publication number: 20190369505
    Abstract: The disclosure relates to measuring a target. In one arrangement, a measurement apparatus is provided that has an optical system configured to illuminate a target with radiation and direct reflected radiation from the target to a sensor. A programmable spatial light modulator in a pupil plane of the optical system is programmed to redirect light in each of a plurality of pupil plane zones in such a way as to form a corresponding plurality of images at different locations on the sensor. Each image is formed by radiation passing through a different respective one of the pupil plane zones.
    Type: Application
    Filed: May 13, 2019
    Publication date: December 5, 2019
    Applicant: ASML Netherlands B.V.
    Inventors: Jin LIAN, Zili ZHOU, Duygu AKBULUT, Sergey TARABRIN
  • Patent number: 10444640
    Abstract: A metrology apparatus is disclosed that has an optical system to focus radiation onto a structure and directs redirected radiation from the structure to a detection system. The optical system applies a plurality of different offsets of an optical characteristic to radiation before and/or after redirected by the structure, such that a corresponding plurality of different offsets are provided to redirected radiation derived from a first point of a pupil plane field distribution relative to redirected radiation derived from a second point of the pupil plane field distribution. The detection system detects a corresponding plurality of radiation intensities resulting from interference between the redirected radiation derived from the first point of the pupil plane field distribution and the redirected radiation derived from the second point of the pupil plane field distribution. Each radiation intensity corresponds to a different one of the plurality of different offsets.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: October 15, 2019
    Assignee: ASML Netherlands B.V.
    Inventors: Janneke Ravensbergen, Duygu Akbulut, Nitesh Pandey, Jin Lian
  • Publication number: 20190285993
    Abstract: Methods and apparatuses for measuring a plurality of structures formed on a substrate are disclosed. In one arrangement, a method includes obtaining data from a first measurement process. The first measurement process including individually measuring each of the plurality of structures to measure a first property of the structure. A second measurement process is used to measure a second property of each of the plurality of structures. The second measurement process includes illuminating each structure with radiation having a radiation property that is individually selected for that structure using the measured first property for the structure.
    Type: Application
    Filed: May 31, 2019
    Publication date: September 19, 2019
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Nitesh PANDEY, Jin LIAN, Samee Ur REHMAN, Martin Jacobus Johan JAK
  • Patent number: 10310389
    Abstract: Methods and apparatuses for measuring a plurality of structures formed on a substrate are disclosed. In one arrangement, a method includes obtaining data from a first measurement process. The first measurement process including individually measuring each of the plurality of structures to measure a first property of the structure. A second measurement process is used to measure a second property of each of the plurality of structures. The second measurement process includes illuminating each structure with radiation having a radiation property that is individually selected for that structure using the measured first property for the structure.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: June 4, 2019
    Assignee: ASML Netherlands B.V.
    Inventors: Nitesh Pandey, Jin Lian, Samee Ur Rehman, Martin Jacobus Johan Jak
  • Publication number: 20190113852
    Abstract: A metrology apparatus is disclosed that has an optical system to focus radiation onto a structure and directs redirected radiation from the structure to a detection system. The optical system applies a plurality of different offsets of an optical characteristic to radiation before and/or after redirected by the structure, such that a corresponding plurality of different offsets are provided to redirected radiation derived from a first point of a pupil plane field distribution relative to redirected radiation derived from a second point of the pupil plane field distribution. The detection system detects a corresponding plurality of radiation intensities resulting from interference between the redirected radiation derived from the first point of the pupil plane field distribution and the redirected radiation derived from the second point of the pupil plane field distribution. Each radiation intensity corresponds to a different one of the plurality of different offsets.
    Type: Application
    Filed: October 12, 2018
    Publication date: April 18, 2019
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Janneke RAVENSBERGEN, Duygu AKBULUT, Nitesh PANDEY, Jin LIAN
  • Publication number: 20190107785
    Abstract: Disclosed is a method, and associated apparatuses, for measuring a parameter of interest relating to a structure having at least two layers. The method comprises illuminating the structure with measurement radiation and detecting scattered radiation having been scattered by said structure. The scattered radiation comprises normal and complementary higher diffraction orders. A scatterometry model which relates a scattered radiation parameter to at least a parameter of interest and an asymmetry model which relates the scattered radiation parameter to at least one asymmetry parameter are defined, the asymmetry parameter relating to one or more measurement system errors and/or an asymmetry in the target other than a misalignment between the two layers. A combination of the scatterometry model and asymmetry model is used to determine a system of equations, and the system of equations is then solved for the parameter of interest.
    Type: Application
    Filed: October 9, 2018
    Publication date: April 11, 2019
    Applicant: ASML Netherlands B.V.
    Inventors: Narjes JAVAHERI, Mohammadreza Hajiahmadi, Murat Bozkurt, Alberto Da Costa Assafrao, Marc Johannes Noot, Simon Gijsbert Josephus Mathijssen, Jin Lian