Patents by Inventor Jin-Ming Chen

Jin-Ming Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080213588
    Abstract: A uniform composite nanofiber includes a tubular first nanofiber, and a second nanofiber formed inside or outside the first nanofiber. The first nanofiber is first formed within a plurality of nano-scale pores of a template placed on a current collector, and then the second nanofiber is formed on inner or outer surface of the first nanofiber, and the template is removed afterwards for obtaining the composite nanofiber.
    Type: Application
    Filed: August 8, 2007
    Publication date: September 4, 2008
    Inventors: Jin-Ming Chen, Chien-Te Hsieh, Hsiu-Wu Huang, Yue-Hao Huang, Hung-Hsiao Lin, Mao-Huang Liu, Shih-Chieh Liao, Han-Chang Shih
  • Patent number: 7404932
    Abstract: A solid-phase nano extraction device includes an extraction tube whose inner surface has a nanostructure for a large contact area with object to be detected. The nanostructure can adsorb objects in an extremely short reaction time. A driving structure is designed for the solid-phase micro extraction device. The extraction tube is connected to the driving structure for the objects to enter the fiber under the force of concentration gradient, pressure difference, or capillary force, thereby being adsorbed onto the nanostructure.
    Type: Grant
    Filed: December 7, 2004
    Date of Patent: July 29, 2008
    Assignee: Industrial Technology Research Institute
    Inventors: Jin-Ming Chen, Chien-Te Hsieh, Yue-Hao Huang, Rong-Rong Kuo, Yu-Run Lin, Chiung-Wen Hu, Mu-Rong Chao, Kuen-Yuh Wu
  • Patent number: 7323218
    Abstract: Methods of fabricating one-dimensional composite nanofiber on a template membrane with porous array by chemical or physical process are disclosed. The whole procedures are established under a base concept of “secondary template”. First of all, tubular first nanofibers are grown up in the pores of the template membrane. Next, by using the hollow first nanofibers as the secondary templates, second nanofibers are produced therein. Finally, the template membrane is removed to obtain composite nanofibers. Showing superior performance in weight energy density, current discharge efficiency and irreversible capacity, the composite nanofibers are applied to extensive scopes like thin-film battery, hydrogen storage, molecular sieving, biosensor and catalyst support in addition to applications in lithium batteries.
    Type: Grant
    Filed: April 21, 2003
    Date of Patent: January 29, 2008
    Assignee: Industrial Technology Research Institute
    Inventors: Jin-Ming Chen, Chien-Te Hsieh, Hsiu-Wen Huang, Yue-Hao Huang, Hung-Hsiao Lin, Mao-Huang Liu, Shih-Chieh Liao, Han-Chang Shih
  • Publication number: 20070134469
    Abstract: A transparent film, which has a rugged surface with tiny cilia, is prepared by the tetrapod-shaped ZnO (zinc oxide) nanopowders coated with polymers including CFx and/or CHx functional group(s). This transparent film possesses UV-shielding and water/oil repellent functions, which can be applied to textiles, glass, woods, ceramics, tiles, plastics, and metals.
    Type: Application
    Filed: June 1, 2006
    Publication date: June 14, 2007
    Inventors: Shih-Chieh Liao, Chien-Te Hsieh, Jin-Ming Chen, Jung-Jung Kuo, Chia-Hao Chang
  • Publication number: 20060162495
    Abstract: The present invention relates to a nanostructured metal powder and a method of fabricating the same. A twin-wire electric arc process is performed to melt the wire tips, and metal melt is formed. Simultaneously, the metal melt is broken up into melt droplets by an atomizing device. The operating temperature of the electric arc process is controlled between melting point and boiling point of the wire, to avoid vaporization of the melt droplets. Then, a fast cooling is performed to quench the melt droplets. Thus, melt droplets are solidified to ?m-scaled, spherical and dense powders comprising nano-grains (d<100 nm).
    Type: Application
    Filed: December 28, 2005
    Publication date: July 27, 2006
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Shih-Chieh Liao, Jin-Ming Chen, Song-Wein Hong, Zhong-Ren Wu
  • Publication number: 20060023959
    Abstract: A circuit for computing sums of absolute difference (SAD) is provided. The circuit has an absolute difference circuit, a first adder, a first register and a first selective circuit. The absolute difference circuit receives a first data PMi,j and a second data PSi,j and output a absolute difference data ADi,j, wherein ADi,j=|PMi,j?PSi,j|. The first adder receives and adds the absolute difference data and a first accumulative data, and outputs a first sum. The register receives and locks the first sum according to a first preset timing sequence, and outputs a first sum of absolute difference data. The first selective circuit receives and selects the first sum of absolute difference data or 0, and outputs the selected data as the first accumulative data.
    Type: Application
    Filed: June 21, 2005
    Publication date: February 2, 2006
    Inventors: Hsing-Chien Yang, Jin-Ming Chen, Lucian-Yuan
  • Publication number: 20050142039
    Abstract: A solid-phase nano extraction device includes an extraction tube whose inner surface has a nanostructure for a large contact area with object to be detected. The nanostructure can adsorb objects in an extremely short reaction time. A driving structure is designed for the solid-phase micro extraction device. The extraction tube is connected to the driving structure for the objects to enter the fiber under the force of concentration gradient, pressure difference, or capillary force, thereby being adsorbed onto the nanostructure.
    Type: Application
    Filed: December 7, 2004
    Publication date: June 30, 2005
    Inventors: Jin-Ming Chen, Chien-Te Hsieh, Yue-Hao Huang, Rong-Rong Kuo, Yu-Run Lin, Chiung-Wen Hu, Mu-Rong Chao, Kuen-Yuh Wu
  • Patent number: 6814927
    Abstract: A nanostructured tungsten carbide bulk material, sintered from tungsten carbide and metal such as cobalt nano-powders, comprises a tungsten carbide and a metallic binder such as cobalt phases. The tungsten carbide phase has nanostructures comprising a plurality of dislocations, twins, stacking faults, dislocation cells, nano-subgrains with preferred orientation or texture, or a combination thereof.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: November 9, 2004
    Assignee: Industrial Technology Research Institute
    Inventors: Shih-Chieh Liao, Song-Wein Hong, Geoffrey Wen Tai Shuy, Jin-Ming Chen, Thiraphat Vilaithong, Lang Deng Yu
  • Patent number: 6798654
    Abstract: A woofer module is used for outputting alow-frequency audio signal, and can be inserted into and removed from anexpansion slot of a portable computer. The woofer module has a housing, a speaker unit positioned inside the housing for generating the audio signal, a predetermined space positioned inside the housing for resonating the audio signal, and a bass reflex duct positioned inside the housing which is connected to an output vent of the predetermined space and an output vent of the housing for transmitting the audio signal from the output vent of the housing to an ambientenvironment.
    Type: Grant
    Filed: March 19, 2003
    Date of Patent: September 28, 2004
    Assignee: Wistron Corporation
    Inventors: Hung-Yue Chang, Chu-Chia Tsai, Shu-Hsien Chu, Chien-Te Li, Wen-Chi Chen, Jin-Ming Chen, Sung-Chan Huang, Tung-Yang Li
  • Publication number: 20040126649
    Abstract: A low-cost, simple method for manufacturing highly-ordered nanofibers is provided. The feature of the procedure is using a self-catalytic mechanism. First of all, a porous membrane template is used as a filter to spread metal nanoparticles, which have a self-catalytic characteristic, onto a current collector. After removing, the membrane template, the nanoparticles grow and become highly-ordered nanofibers by heat treatment in an oxygen atmosphere. The nanofibers show superior field emission effects and are therefore ideal field emission sources.
    Type: Application
    Filed: April 1, 2003
    Publication date: July 1, 2004
    Inventors: Jin-Ming Chen, Chien-Te Hsieh, Yue-Hao Huang, Hung-Hsiao Lin, Han-Chang Shih
  • Publication number: 20040126305
    Abstract: Methods of fabricating one-dimensional composite nanofiber on a template membrane with porous array by chemical or physical process are disclosed. The whole procedures are established under a base concept of “secondary template”. First of all, tubular first nanofibers are grown up in the pores of the template membrane. Next, by using the hollow first nanofibers as the secondary templates, second nanofibers are produced therein. Finally, the template membrane is removed to obtain composite nanofibers. Showing superior performance in weight energy density, current discharge efficiency and irreversible capacity, the composite nanofibers are applied to extensive scopes like thin-film battery, hydrogen storage, molecular sieving, biosensor and catalyst support except applications in lithium batteries.
    Type: Application
    Filed: April 21, 2003
    Publication date: July 1, 2004
    Inventors: Jin-Ming Chen, Chien-Te Hsieh, Hsiu-Wen Huang, Yue-Hao Huang, Hung-Hsiao Lin, Mao-Huang Liu, Shih-Chieh Liao, Han-Chang Shih
  • Publication number: 20040123699
    Abstract: The present invention relates to a nanostructured metal powder and a method of fabricating the same. A twin-wire electric arc process is performed to melt the wire tips, and metal melt is formed. Simultaneously, the metal melt is broken up into melt droplets by an atomizing device. The operating temperature of the electric arc process is controlled between melting point and boiling point of the wire, to avoid vaporization of the melt droplets. Then, a fast cooling is performed to quench the melt droplets. Thus, melt droplets are solidified to &mgr;m-scaled, spherical and dense powders comprising nano-grains (d<100 nm).
    Type: Application
    Filed: June 10, 2003
    Publication date: July 1, 2004
    Applicant: Industrial Technology Research Institute
    Inventors: Shih-Chieh Liao, Jin-Ming Chen, Song-Wein Hong, Zhong-Ren Wu
  • Publication number: 20040062001
    Abstract: A woofer module is used for outputting alow-frequency audio signal, and can be inserted into and removed from anexpansion slot of a portable computer. The woofer module has a housing, a speaker unit positioned inside the housing for generating the audio signal, a predetermined space positioned inside the housing for resonating the audio signal, and a bass reflex duct positioned inside the housing which is connected to an output vent of the predetermined space and an output vent of the housing for transmitting the audio signal from the output vent of the housing to an ambientenvironment.
    Type: Application
    Filed: March 19, 2003
    Publication date: April 1, 2004
    Inventors: Hung-Yue Chang, Chu-Chia Tsai, Shu-Hsien Chu, Chien-Te Li, Wen-Chi Chen, Jin-Ming Chen, Sung-Chan Huang, Tung-Yang Li
  • Publication number: 20030226423
    Abstract: A nanostructured tungsten carbide bulk material, sintered from tungsten carbide and metal such as cobalt nano-powders, comprises a tungsten carbide and a metallic binder such as cobalt phases. The tungsten carbide phase has nanostructures comprising a plurality of dislocations, twins, stacking faults, dislocation cells, nano-subgrains with preferred orientation or texture, or a combination thereof.
    Type: Application
    Filed: November 15, 2002
    Publication date: December 11, 2003
    Inventors: Shih-Chieh Liao, Song-Wein Hong, Geoffrey Wen Tai Shuy, Jin-Ming Chen, Thiraphat Vilaithong, Lang Deng Yu
  • Publication number: 20030127950
    Abstract: A mail opening bag for preventing infection of bacteria-by-mail includes a containing body, and a pair of gloves. The containing body has an opening, a transparent upper part, and sealing elements for sealing the opening. The gloves are received in the containing body, and are formed together with the containing body with the wrist portions thereof being connected to the containing body. The gloves have coarse surfaces at the fingertip portions for increasing the friction against a mail to be opened in the containing body. Thus, a user can be sure whether there is suspicious powder when opening mail in the mail opening bag, and protected against possible infection.
    Type: Application
    Filed: January 10, 2002
    Publication date: July 10, 2003
    Inventors: Cheng-Hui Tseng, Jin-Ming Chen
  • Patent number: 5744262
    Abstract: An organic electrolyte for use in a lithium secondary battery comprising a lithium salt dissolved in an organic solvent mixture is disclosed. The lithium salt can be LiClO.sub.4, LiPF.sub.6, LiBF.sub.4, LiCF.sub.3 SO.sub.3, LiAsF.sub.6, or other lithium salt, and the organic solvent mixture contains a carbonate and an acetate. The carbonate is ethylene carbonate, and the acetate can be either methyl acetate or ethyl acetate. The carbonate and the acetate are provided in a ratio of carbonate/acetate ranging from 80/20 to 20/80, or preferably from 40/60 to 60/40, and said lithium salt has a concentration of between 0.6 and 1.5M, or preferably at about 1M. The electrolyte exhibits excellent stability in a lithium secondary battery having a cathode which contains either LiCoO.sub.2 or LiMn.sub.2 O.sub.4, and can withstand charge/discharge voltages of at least as high as 5 V (vs. Li/Li.sup.+), with excellent service life.
    Type: Grant
    Filed: September 23, 1996
    Date of Patent: April 28, 1998
    Assignee: Industrial Technology Research Institute
    Inventors: Cheng-Hung Cheng, Ching-Yih Yao, Chia-Yu Yang, Sheng-Hua Shih, Tung-Han Kao, Jin-Ming Chen, Weir-Mirn Hurng
  • Patent number: 5514490
    Abstract: An improved lithium secondary battery using a novel layered titanium phosphate having the formula of TiO(OH)(H.sub.2 PO.sub.4), or LTP, as anode material, and LiCoO.sub.2, LiNiO.sub.2, or other appropriate material, as cathode. A stable operating voltage of 3-volt can be obtained from the resultant lithium secondary battery. The layered titanium phosphate is prepared by first reacting a tetramethylammonium hydroxide (N(CH.sub.3).sub.4 OH) solution containing orthophosphoric acid with titanium dioxide in a low temperature hydrothermal reaction to form a tetramethylammonium form of layered titanium phosphate, or NMe.sub.4 TP, which serves as the precursor of LTP. The precursor NMe.sub.4 TP is then placed in a concentrated hydrochloric acid at room temperature to obtain a high purity LTP via a cation exchange reaction. Each of the Li.sub.
    Type: Grant
    Filed: August 30, 1994
    Date of Patent: May 7, 1996
    Assignee: Industrial Technology Research Institute
    Inventors: Jin-Ming Chen, Yingjeng J. Li, Weir-Mirn Hurng, M. Stanley Whittingham