Patents by Inventor JIN-YAN HSU

JIN-YAN HSU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180186400
    Abstract: An assisted steering system with vibrational function for vehicles is applied to a steering system of a vehicle. The steering system has a first steering column and a second steering column, and the assisted steering system includes a speed-adjustable steering device and an electronic control unit. The speed-adjustable steering device is connected between the first steering column and the second steering column and has a motor. The electronic control unit is electrically connected to the motor, generates a vibration driving current when receiving a warning command, combines a steering driving current with the vibration driving current to generate a motor control current, and outputs the motor control current to the motor of the speed-adjustable steering device to excite windings of the motor with the vibration driving current in generation of a vibrational effect.
    Type: Application
    Filed: December 29, 2016
    Publication date: July 5, 2018
    Inventors: Jin-Yan Hsu, Tong-Kai Jhang, Chih-Jung Yeh
  • Patent number: 9567004
    Abstract: A method for vehicle path tracking with error correction comprises steps of: acquiring vehicle instant information and a target path; developing a predictive path in accordance with the vehicle instant information; determining a vehicle yaw rate threshold value in accordance with the vehicle instant information; calculating a steering angle corresponding to the vehicle yaw rate threshold value; estimating a lateral error correction value corresponding to the steering angle; determining whether the lateral error correction value is not greater than an error value between the target path and the predictive path; controlling a vehicle to turn the steering angle corresponding to the lateral error correction value when the lateral error correction value is less than the error value; and controlling the vehicle to turn the steering angle corresponding to the error value when the lateral error correction value is greater than the error value.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: February 14, 2017
    Assignee: AUTOMOTIVE RESEARCH & TESTING CENTER
    Inventors: Tong-Kai Jhang, Jin-Yan Hsu, Jiun-Jie Chen
  • Patent number: 9116784
    Abstract: The present invention proposes a system and method for preventing a vehicle from rolling over in curved lane. The road images captured by the image capture devices are used to calculate road information. The road information together with the vehicular dynamic information, such as the speed and acceleration of the vehicle are used to predict the rollover angle and lateral acceleration of the vehicle moving on the curved lane. The height of the gravity center and critical rollover speed of the vehicle moving on the curved lane are worked out and used to define a vehicular rollover index. If the vehicular rollover index exceeds a preset value, the system warns the driver or directly controls the speed of the vehicle to prevent the vehicle from rolling over in the curved lane.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: August 25, 2015
    Assignee: Automotive Research & Test Center
    Inventors: Chi-Chun Yao, Jin-Yan Hsu, Chun-Hsiung Chen, Tsung-Hua Hsu, Yi-Feng Su
  • Patent number: 9061564
    Abstract: An active vehicle with variable inclination mechanism is provided. The active vehicle with variable inclination mechanism comprises a linear slide mechanism, two sets of longitudinal interlocking mechanism, a steering control mechanism, and a control unit. The linear slide mechanism comprises a reciprocating action member. A lateral displacement of the reciprocating action member drives the longitudinal interlocking mechanism to produce a displacement along a longitudinal direction while a torque is applied at the steering control mechanism. The wheels are driven to move along an opposite longitudinal direction and to form an inclination. Using the active vehicle with variable inclination mechanism can provide a real-time inclination force while rounding a corner as well as increase the safety. Besides, the driver can easily get on/off the vehicle when the vehicle is stationary and the reciprocating action member is locked at the stationary position of the vehicle.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: June 23, 2015
    Assignee: Automotive Research & Testing Center
    Inventors: Chao-Chih Yu, Chih-Jung Yeh, Jin-Yan Hsu, Jiun-Jie Chen, Shih-Jung Ho
  • Publication number: 20150165855
    Abstract: An active vehicle with variable inclination mechanism is provided. The active vehicle with variable inclination mechanism comprises a linear slide mechanism, two sets of longitudinal interlocking mechanism, a steering control mechanism, and a control unit. The linear slide mechanism comprises a reciprocating action member. A lateral displacement of the reciprocating action member drives the longitudinal interlocking mechanism to produce a displacement along a longitudinal direction while a torque is applied at the steering control mechanism. The wheels are driven to move along an opposite longitudinal direction and to form an inclination. Using the active vehicle with variable inclination mechanism can provide a real-time inclination force while rounding a corner as well as increase the safety. Besides, the driver can easily get on/off the vehicle when the vehicle is stationary and the reciprocating action member is locked at the stationary position of the vehicle.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 18, 2015
    Applicant: Automotive Research & Testing Center
    Inventors: Chao-Chih YU, Chih-Jung YEH, Jin-Yan HSU, Jiun-Jie CHEN, Shih-Jung HO
  • Patent number: 8941375
    Abstract: A contactless detection apparatus has a first magnet ring, a second magnet ring, a first magnetic sensor, a second magnetic sensor and a controller. The two magnet rings are respectively mounted on two ends of a torsion shaft. When the torsion shaft rotates, the controller detects the magnetic fields of the two magnet rings through the two magnetic sensors. The controller calculates a twisting torque exerted on the torsion shaft and a rotational angle of the torsion shaft according to the detected magnetic fields at the same time. The detection apparatus of the invention has simple structure. The magnetic fields of both magnet rings do not interfere with each other, such that the detection result of the invention is accurate.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: January 27, 2015
    Assignee: Automotive Research & Testing Center
    Inventors: Chau-Chih Yu, Tsung-Hua Hsu, Jin-Yan Hsu, Chih-Jung Yeh
  • Patent number: 8914194
    Abstract: A stimulus-based steering sensor device and a method for the same are disclosed. The sensor device comprises at least one driving wheel, a processor, two driven wheels, and two resolvers. The processor generates a stimulus signal and has a signal-angle lookup table. The driving wheel contacts two driven wheels. When following the rotation of a steering column, the driving wheel drives two driven wheels to rotate at different speeds. Two resolvers connect with the processor, respectively engage with two driven wheels, receive the stimulus signal, and respectively output two first sinusoidal signals to the processor according to the rotational speeds of two driven wheels. The processor analyzes two first sinusoidal signals to obtain two second sinusoidal signals having different periods, and uses the second sinusoidal signals and the signal-angle lookup table to obtain a first absolute angle value of the rotation of the steering wheel.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: December 16, 2014
    Assignee: Automotive Research & Test Center
    Inventors: Jin-Yan Hsu, Tsung-Hua Hsu, Chau-Chih Yu, Tsung-Hsien Hu, Chih-Jung Yeh
  • Publication number: 20140159710
    Abstract: A contactless detection apparatus has a first magnet ring, a second magnet ring, a first magnetic sensor, a second magnetic sensor and a controller. The two magnet rings are respectively mounted on two ends of a torsion shaft. When the torsion shaft rotates, the controller detects the magnetic fields of the two magnet rings through the two magnetic sensors. The controller calculates a twisting torque exerted on the torsion shaft and a rotational angle of the torsion shaft according to the detected magnetic fields at the same time. The detection apparatus of the invention has simple structure. The magnetic fields of both magnet rings do not interfere with each other, such that the detection result of the invention is accurate.
    Type: Application
    Filed: December 7, 2012
    Publication date: June 12, 2014
    Applicant: Automotive Research & Testing Center
    Inventors: Chau-Chih YU, Tsung-Hua HSU, Jin-Yan HSU, Chih-Jung YEH
  • Publication number: 20140081542
    Abstract: The present invention proposes a system and method for preventing a vehicle from rolling over in curved lane. The road images captured by the image capture devices are used to calculate road information. The road information together with the vehicular dynamic information, such as the speed and acceleration of the vehicle are used to predict the rollover angle and lateral acceleration of the vehicle moving on the curved lane. The height of the gravity center and critical rollover speed of the vehicle moving on the curved lane are worked out and used to define a vehicular rollover index. If the vehicular rollover index exceeds a preset value, the system warns the driver or directly controls the speed of the vehicle to prevent the vehicle from rolling over in the curved lane.
    Type: Application
    Filed: December 11, 2012
    Publication date: March 20, 2014
    Applicant: AUTOMOTIVE RESEARCH & TEST CENTER
    Inventors: Chi-Chun YAO, Jin-Yan HSU, Chun-Hsiung CHEN, Tsung-Hua HSU, Yi-Feng SU
  • Patent number: 8670905
    Abstract: A vehicle stability control method is to be performed by a vehicle stability control system of a motor vehicle, and includes the steps of: detecting an actual yaw rate, and obtaining a plurality of detection values by detecting a vehicle speed and a steering wheel angle, and at least one operation status selected from a lateral acceleration status, a load status and a steering wheel angular speed status; obtaining a plurality of intermediate weight values, from which a steering characteristic value is determined, based on the obtained detection values; obtaining a target yaw rate based on the vehicle speed, the steering wheel angle and the steering characteristic value; and controlling steering of road wheels according to difference between the target and actual yaw rates.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: March 11, 2014
    Assignee: Automotive Research & Testing Center
    Inventors: Jin-Yan Hsu, Bo-Ruei Chen, Tsung-Hsien Hu
  • Publication number: 20130332031
    Abstract: A stimulus-based steering sensor device and a method for the same are disclosed. The sensor device comprises at least one driving wheel, a processor, two driven wheels, and two resolvers. The processor generates a stimulus signal and has a signal-angle lookup table. The driving wheel contacts two driven wheels. When following the rotation of a steering column, the driving wheel drives two driven wheels to rotate at different speeds. Two resolvers connect with the processor, respectively engage with two driven wheels, receive the stimulus signal, and respectively output two first sinusoidal signals to the processor according to the rotational speeds of two driven wheels. The processor analyzes two first sinusoidal signals to obtain two second sinusoidal signals having different periods, and uses the second sinusoidal signals and the signal-angle lookup table to obtain a first absolute angle value of the rotation of the steering wheel.
    Type: Application
    Filed: August 6, 2012
    Publication date: December 12, 2013
    Inventors: Jin-Yan HSU, Tsung-Hua HSU, Chau-Chih YU, Tsung-Hsien HU, Chih-Jung Yeh
  • Patent number: 8483913
    Abstract: The present invention discloses a self-calibration method for an electric power steering system, which can self-calibrate the sensors to a normalized state to prevent from signal distortion, whereby to maintain stable steering sense of the driver and promote robustness and performance of the EPS system. The self-calibration method includes a signal offset compensation tactic and a zero-point signal self-calibration tactic. The present invention determines whether to undertake self-calibration according to judgement tactics, including a sensor power supply judgement tactic, a sensor correctness judgement tactic, and a self-calibration triggering condition. The self-calibration method can increase the correctness of sensors, maintain the original steering-assisting function and promote robustness of the EPS system.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: July 9, 2013
    Assignee: Automotive Research & Test Center
    Inventors: Jin-Yan Hsu, Chih-Jung Yeh, Tsung-Hsien Hu, Hsien-Chang Chiu
  • Publication number: 20130103263
    Abstract: A vehicle stability control method is to be performed by a vehicle stability control system of a motor vehicle, and includes the steps of: detecting an actual yaw rate, and obtaining a plurality of detection values by detecting a vehicle speed and a steering wheel angle, and at least one operation status selected from a lateral acceleration status, a load status and a steering wheel angular speed status; obtaining a plurality of intermediate weight values, from which a steering characteristic value is determined, based on the obtained detection values; obtaining a target yaw rate based on the vehicle speed, the steering wheel angle and the steering characteristic value; and controlling steering of road wheels according to difference between the target and actual yaw rates.
    Type: Application
    Filed: December 21, 2011
    Publication date: April 25, 2013
    Inventors: Jin-Yan HSU, Bo-Ruei CHEN, Tsung-Hsien HU
  • Publication number: 20120173081
    Abstract: The present invention discloses a self-calibration method for an electric power steering system, which can self-calibrate the sensors to a normalized state to prevent from signal distortion, whereby to maintain stable steering sense of the driver and promote robustness and performance of the EPS system. The self-calibration method includes a signal offset compensation tactic and a zero-point signal self-calibration tactic. The present invention determines whether to undertake self-calibration according to judgement tactics, including a sensor power supply judgement tactic, a sensor correctness judgement tactic, and a self-calibration triggering condition. The self-calibration method can increase the correctness of sensors, maintain the original steering-assisting function and promote robustness of the EPS system.
    Type: Application
    Filed: March 1, 2011
    Publication date: July 5, 2012
    Applicant: AUTOMOTIVE RESEARCH & TEST CENTER
    Inventors: JIN-YAN HSU, CHIH-JUNG YEH, TSUNG-HSIEN HU, HSIEN-CHANG CHIU