Patents by Inventor Jinan Chai

Jinan Chai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8961853
    Abstract: Disclosed are methods of lithography using a tip array having a plurality of pens attached to a backing layer, where the tips can comprise a metal, metalloid, and/or semi-conducting material, and the backing layer can comprise an elastomeric polymer. The tip array can be used to perform a lithography process in which the tips are coated with an ink (e.g., a patterning composition) that is deposited onto a substrate upon contact of the tip with the substrate surface. The tips can be easily leveled onto a substrate and the leveling can be monitored optically by a change in light reflection of the backing layer and/or near the vicinity of the tips upon contact of the tip to the substrate surface.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: February 24, 2015
    Assignee: Northwestern University
    Inventors: Chad A. Mirkin, Wooyoung Shim, Adam B. Braunschweig, Xing Liao, Jinan Chai, Jong Kuk Lim, Gengfeng Zheng, Zijian Zheng
  • Patent number: 8753813
    Abstract: The disclosure relates to a method of forming a pattern having pattern elements with a plurality of sizes on a substrate surface with a tilted pen array that includes choosing a tilt geometry for a pen array with respect to a substrate, inducing the tilt geometry between the pen array and the substrate surface, and forming a pattern having pattern elements on the substrate surface with the titled pen array, whereby the size of the formed pattern elements varies across the substrate surface along the tilted axis or axes. For example, the tilt geometry is in reference to the substrate surface and comprises a first angle with respect to a first axis of the substrate and a second angle with respect to a second axis of the substrate, the second axis being perpendicular to the first axis, and at least one of the first and second angles being non-zero.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: June 17, 2014
    Assignee: Northwestern University
    Inventors: Chad A. Mirkin, Adam B. Braunschweig, Jinan Chai, Dan J. Eichelsdoerfer, Louise R. Giam, Xing Liao, Lu Shin Wong
  • Publication number: 20130040856
    Abstract: The disclosure relates to a method of forming a pattern having pattern elements with a plurality of sizes on a substrate surface with a tilted pen array that includes choosing a tilt geometry for a pen array with respect to a substrate, inducing the tilt geometry between the pen array and the substrate surface, and forming a pattern having pattern elements on the substrate surface with the titled pen array, whereby the size of the formed pattern elements varies across the substrate surface along the tilted axis or axes. For example, the tilt geometry is in reference to the substrate surface and comprises a first angle with respect to a first axis of the substrate and a second angle with respect to a second axis of the substrate, the second axis being perpendicular to the first axis, and at least one of the first and second angles being non-zero.
    Type: Application
    Filed: December 2, 2010
    Publication date: February 14, 2013
    Applicant: NORTHEWESTERN UNIVERSITY
    Inventors: Chad A. Mirkin, Adam B. Braunschweig, Jinan Chai, Dan J. Eichelsdoerfer, Louise R. Giam, Xing Liao, Lu Shin Wong
  • Publication number: 20120167262
    Abstract: Disclosed are methods of lithography using a tip array having a plurality of pens attached to a backing layer, where the tips can comprise a metal, metalloid, and/or semi-conducting material, and the backing layer can comprise an elastomeric polymer. The tip array can be used to perform a lithography process in which the tips are coated with an ink (e.g., a patterning composition) that is deposited onto a substrate upon contact of the tip with the substrate surface. The tips can be easily leveled onto a substrate and the leveling can be monitored optically by a change in light reflection of the backing layer and/or near the vicinity of the tips upon contact of the tip to the substrate surface.
    Type: Application
    Filed: June 4, 2010
    Publication date: June 28, 2012
    Applicant: Northwestern University
    Inventors: Chad A. Mirkin, Wooyoung Shim, Adam B. Braunschweig, Xing Liao, Jinan Chai, Jong Kuk Lim, Gengfeng Zheng, Zijian Zheng
  • Publication number: 20110206905
    Abstract: A method for forming a block copolymer pattern on a substrate, wherein the areal density of nanostructures in the pattern is increased by increasing the thickness of the block copolymer film that is applied to the substrate.
    Type: Application
    Filed: February 7, 2011
    Publication date: August 25, 2011
    Applicants: The Governors of the University of Alberta, National Research Council of Canada
    Inventors: Jillian Buriak, Jinan Chai, Kenneth Harris, Nathanael Wu, Xiaojiang Zhang
  • Publication number: 20110165341
    Abstract: In accordance with an embodiment of the disclosure, a method for forming submicron size nanostructures on a substrate surface includes contacting a substrate with a tip coated with an ink comprising a block copolymer matrix and a nanostructure precursor to form a printed feature comprising the block copolymer matrix and the nanostructure precursor on the substrate, and reducing the nanostructure precursor of the printed feature to form a nanostructure having a diameter (or line width) of less than 1 ?m.
    Type: Application
    Filed: December 2, 2010
    Publication date: July 7, 2011
    Applicant: NORTHWESTERN UNIVERSITY
    Inventors: Chad A. Mirkin, Jinan Chai, Fengwei Huo, Zijian Zheng, Louise R. Giam
  • Publication number: 20100059475
    Abstract: A method of forming nanostructures using block copolymer nanostructure templates is disclosed herein. The method includes forming a nanostructure template by patterning a block copolymer on a substrate and allowing the block copolymer to phase separate to form the nanostructure template. The nanostructure template can then be loaded with a nanostructure precursor material. The nanostructure template is removed to form the nanostructure.
    Type: Application
    Filed: May 13, 2009
    Publication date: March 11, 2010
    Applicant: NORTHWESTERN UNIVERSITY
    Inventors: Chad A. Mirkin, Jinan Chai