Patents by Inventor Jinesh Balakrishna Pillai Kochupurackal

Jinesh Balakrishna Pillai Kochupurackal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8916940
    Abstract: A method of forming a dielectric layer on a further layer of a semiconductor device is disclosed. The method comprises depositing a dielectric precursor compound and a further precursor compound over the further layer, the dielectric precursor compound comprising a metal ion from the group consisting of Yttrium and the Lanthanide series elements, and the further precursor compound comprising a metal ion from the group consisting of group IV and group V metals; and chemically converting the dielectric precursor compound and the further precursor compound into a dielectric compound and a further compound respectively, the further compound self-assembling during said conversion into a plurality of nanocluster nuclei within the dielectric layer formed from the first dielectric precursor compound. The nanoclusters may be dielectric or metallic in nature. Consequently, a dielectric layer is formed that has excellent charge trapping capabilities.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: December 23, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jinesh Balakrishna Pillai Kochupurackal, Willem Frederik Adrianus Besling, Johan Hendrik Klootwijk, Robert Adrianus Maria Wolters, Freddy Roozeboom
  • Patent number: 8697516
    Abstract: A capacitor (110), wherein the capacitor (110) comprises a capacitor dielectric (112) comprising a dielectric matrix (114) of a first value of permittivity, and a plurality of nanoclusters (116) of a second value of permittivity which is larger than the first value of permittivity which are at least partially embedded in the dielectric matrix (114), wherein the plurality of nanoclusters (116) are formed in the dielectric matrix (114) by spontaneous nucleation.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: April 15, 2014
    Assignee: NXP, B.V.
    Inventors: Yukiko Furukawa, Jinesh Balakrishna Pillai Kochupurackal, Johan Hendrik Klootwijk, Frank Pasveer
  • Patent number: 8622310
    Abstract: The invention relates to a token, to an integrated circuit comprising the token, to a method of randomizing the token and a system for randomizing the token. The token comprises a physical unclonable function and comprising probing means for probing the physical unclonable function. The physical unclonable function comprises a capacitor comprising a dielectric medium being arranged at least partially between the electrodes of the capacitor. The dielectric medium is configured for contributing to a capacitance value of the capacitor and comprises conducting particles substantially randomly dispersed in the dielectric medium. The conducting particles comprise a phase changeable material being changeable between a first structural state having a first conductivity and a second structural state having a second conductivity different from the first conductivity.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: January 7, 2014
    Assignee: NXP B.V.
    Inventors: Willem Frederik Adrianus Besling, Jinesh Balakrishna Pillai Kochupurackal
  • Patent number: 8324117
    Abstract: A method of forming a dielectric layer on a further layer of a semiconductor device is disclosed. The method comprises depositing a dielectric precursor compound and a further precursor compound over the further layer, the dielectric precursor compound comprising a metal ion from the group consisting of Yttrium and the Lanthanide series elements, and the further precursor compound comprising a metal ion from the group consisting of group IV and group V metals; and chemically converting the dielectric precursor compound and the further precursor compound into a dielectric compound and a further compound respectively, the further compound self-assembling during said conversion into a plurality of nanocluster nuclei within the dielectric layer formed from the first dielectric precursor compound. The nanoclusters may be dielectric or metallic in nature. Consequently, a dielectric layer is formed that has excellent charge trapping capabilities.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: December 4, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jinesh Balakrishna Pillai Kochupurackal, Willem Frederik Adrianus Besling, Johan Hendrik Klootwijk, Robert Adrianus Maria Wolters, Freddy Roozeboom
  • Publication number: 20110163088
    Abstract: The invention relates to a token, to an integrated circuit comprising the token, to a method of randomizing the token and a system for randomizing the token. The token comprises a physical unclonable function and comprising probing means for probing the physical unclonable function. The physical unclonable function comprises a capacitor comprising a dielectric medium being arranged at least partially between the electrodes of the capacitor. The dielectric medium is configured for contributing to a capacitance value of the capacitor and comprises conducting particles substantially randomly dispersed in the dielectric medium. The conducting particles comprise a phase changeable material being changeable between a first structural state having a first conductivity and a second structural state having a second conductivity different from the first conductivity.
    Type: Application
    Filed: December 17, 2010
    Publication date: July 7, 2011
    Applicant: NXP B.V.
    Inventors: Willem Frederik Adrianus BESLING, Jinesh Balakrishna Pillai KOCHUPURACKAL
  • Publication number: 20110147891
    Abstract: A capacitor (110), wherein the capacitor (110) comprises a capacitor dielectric (112) comprising a dielectric matrix (114) of a first value of permittivity, and a plurality of nanoclusters (116) of a second value of permittivity which is larger than the first value of permittivity which are at least partially embedded in the dielectric matrix (114), wherein the plurality of nanoclusters (116) are formed in the dielectric matrix (114) by spontaneous nucleation.
    Type: Application
    Filed: August 11, 2009
    Publication date: June 23, 2011
    Applicant: NXP B.V.
    Inventors: Yukiko Furukawa, Jinesh Balakrishna Pillai Kochupurackal, Johan Hendrik Klootwijk, Frank Pasveer
  • Publication number: 20110128727
    Abstract: An integrated device includes a Seebeck device (4) integrated in a substrate (2). A heat-generating device (6) warms up the Seebeck device (4) generating electrical power. The Seebeck device powers a further device which may be a micro-battery (8) likewise integrated in the substrate or a Peltier effect device for cooling another heat-generating device.
    Type: Application
    Filed: July 22, 2009
    Publication date: June 2, 2011
    Applicant: NXP B.V.
    Inventors: Jinesh Balakrishna Pillai Kochupurackal, Johan Hendrik Klootwijk
  • Publication number: 20110101471
    Abstract: A method of forming a dielectric layer on a further layer of a semiconductor device is disclosed. The method comprises depositing a dielectric precursor compound and a further precursor compound over the further layer, the dielectric precursor compound comprising a metal ion from the group consisting of Yttrium and the Lanthanide series elements, and the further precursor compound comprising a metal ion from the group consisting of group IV and group V metals; and chemically converting the dielectric precursor compound and the further precursor compound into a dielectric compound and a further compound respectively, the further compound self-assembling during said conversion into a plurality of nanocluster nuclei within the dielectric layer formed from the first dielectric precursor compound. The nanoclusters may be dielectric or metallic in nature. Consequently, a dielectric layer is formed that has excellent charge trapping capabilities.
    Type: Application
    Filed: April 22, 2009
    Publication date: May 5, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jinesh Balakrishna Pillai Kochupurackal, Willem Frederik Adrianus Besling, Johan Hendrik Klootwijk, Robert Adrianus Maria Wolters, Freddy Roozeboom