Patents by Inventor Jing Hong Huang

Jing Hong Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955336
    Abstract: Method of manufacturing a semiconductor device, includes forming a protective layer over substrate having a plurality of protrusions and recesses. The protective layer includes polymer composition including polymer having repeating units of one or more of: Wherein a, b, c, d, e, f, g, h, and i are each independently H, —OH, —ROH, —R(OH)2, —NH2, —NHR, —NR2, —SH, —RSH, or —R(SH)2, wherein at least one of a, b, c, d, e, f, g, h, and i on each repeating unit is not H. R, R1, and R2 are each independently a C1-C10 alkyl group, a C3-C10 cycloalkyl group, a C1-C10 hydroxyalkyl group, a C2-C10 alkoxy group, a C2-C10 alkoxy alkyl group, a C2-C10 acetyl group, a C3-C10 acetylalkyl group, a C1-C10 carboxyl group, a C2-C10 alkyl carboxyl group, or a C4-C10 cycloalkyl carboxyl group, and n is 2-1000. A resist layer is formed over the protective layer, and the resist layer is patterned.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: April 9, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jing Hong Huang, Wei-Han Lai, Ching-Yu Chang
  • Publication number: 20230359124
    Abstract: A method includes forming a bottom layer over a semiconductor substrate, where the bottom layer includes a polymer bonded to a first cross-linker and a second cross-linker, the first cross-linker being configured to be activated by ultraviolet (UV) radiation and the second cross-linker being configured to be activated by heat at a first temperature. The method then proceeds to exposing the bottom layer to a UV source to activate the first cross-linker, resulting in an exposed bottom layer, where the exposing activates the first cross-linker. The method further includes baking the exposed bottom layer, where the baking activates the second cross-linker.
    Type: Application
    Filed: July 14, 2023
    Publication date: November 9, 2023
    Inventors: Jing Hong Huang, Chien-Wei Wang, Shang-Wern Chang, Ching-Yu Chang
  • Publication number: 20230343582
    Abstract: A composition, comprising: a carbon backbone polymer; a first crosslinker; and a second crosslinker. The first crosslinker partially crosslinks the carbon backbone polymer at a temperature ranging from 100° C. to 170° C., and the second crosslinker crosslinks the carbon backbone polymer at a temperature ranging from 180 20 C. to 300° C. The first crosslinker is one or more selected from the group consisting of A-(OR)x, A-(NR)x, where A is a monomer, oligomer, or a second polymer having a molecular weight ranging from 100 to 20,000, R is an alkyl group, cycloalkyl group, cycloalkylepoxy group, or C3-C15 heterocyclic group, OR is an alkyloxy group, cycloalkyloxy group, carbonate group, alkylcarbonate group, alkyl carboxylate group, tosylate group, or mesylate group, NR is an alkylamide group or an alkylamino group, and x ranges from 2 to 1000. The second crosslinker is different from the first crosslinker.
    Type: Application
    Filed: June 29, 2023
    Publication date: October 26, 2023
    Inventors: Jing Hong HUANG, Ching-Yu CHANG, Wei-Han LAI
  • Patent number: 11728161
    Abstract: A spin on carbon composition, comprises: a carbon backbone polymer; a first crosslinker; and a second crosslinker. The first crosslinker reacts with the carbon backbone polymer to partially crosslink the carbon backbone polymer at a first temperature, and the second crosslinker reacts with the carbon backbone polymer to further crosslink the carbon backbone polymer at a second temperature higher than the first temperature. The first crosslinker is a monomer, oligomer, or polymer. The second crosslinker is a monomer, oligomer, or polymer. The first and second crosslinkers are different from each other. When either of the first crosslinker or the second crosslinker is a polymer, the polymer is a different polymer than the carbon backbone polymer.
    Type: Grant
    Filed: July 13, 2022
    Date of Patent: August 15, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jing Hong Huang, Ching-Yu Chang, Wei-Han Lai
  • Patent number: 11703766
    Abstract: A method includes forming a bottom layer over a semiconductor substrate, where the bottom layer includes a polymer bonded to a first cross-linker and a second cross-linker, the first cross-linker being configured to be activated by ultraviolet (UV) radiation and the second cross-linker being configured to be activated by heat at a first temperature. The method then proceeds to exposing the bottom layer to a UV source to activate the first cross-linker, resulting in an exposed bottom layer, where the exposing activates the first cross-linker. The method further includes baking the exposed bottom layer, where the baking activates the second cross-linker.
    Type: Grant
    Filed: July 25, 2022
    Date of Patent: July 18, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jing Hong Huang, Chien-Wei Wang, Shang-Wern Chang, Ching-Yu Chang
  • Publication number: 20220392764
    Abstract: A method includes providing a layered structure on a substrate, the layered structure including a bottom layer formed over the substrate and a photoresist layer formed over the bottom layer, exposing the photoresist layer to a radiation source, developing the photoresist layer, patterning the bottom layer and removing portions of the substrate through openings in the patterned bottom layer. In some embodiments, a middle layer is provided between the bottom layer and the photoresist layer. The material of the bottom layer includes at least one cross-linking agent that has been functionalized to decrease its affinity to other materials in the bottom layer.
    Type: Application
    Filed: September 22, 2021
    Publication date: December 8, 2022
    Inventors: Jing-Hong HUANG, Wei-Han LAI, Ching-Yu CHANG
  • Publication number: 20220373891
    Abstract: A method includes forming a bottom layer over a semiconductor substrate, where the bottom layer includes a polymer bonded to a first cross-linker and a second cross-linker, the first cross-linker being configured to be activated by ultraviolet (UV) radiation and the second cross-linker being configured to be activated by heat at a first temperature. The method then proceeds to exposing the bottom layer to a UV source to activate the first cross-linker, resulting in an exposed bottom layer, where the exposing activates the first cross-linker. The method further includes baking the exposed bottom layer, where the baking activates the second cross-linker.
    Type: Application
    Filed: July 25, 2022
    Publication date: November 24, 2022
    Inventors: Jing Hong Huang, Chien-Wei Wang, Shang-Wern Chang, Ching-Yu Chang
  • Publication number: 20220367178
    Abstract: A spin on carbon composition, comprises: a carbon backbone polymer; a first crosslinker; and a second crosslinker. The first crosslinker reacts with the carbon backbone polymer to partially crosslink the carbon backbone polymer at a first temperature, and the second crosslinker reacts with the carbon backbone polymer to further crosslink the carbon backbone polymer at a second temperature higher than the first temperature. The first crosslinker is a monomer, oligomer, or polymer. The second crosslinker is a monomer, oligomer, or polymer. The first and second crosslinkers are different from each other. When either of the first crosslinker or the second crosslinker is a polymer, the polymer is a different polymer than the carbon backbone polymer.
    Type: Application
    Filed: July 13, 2022
    Publication date: November 17, 2022
    Inventors: Jing Hong HUANG, Ching-Yu CHANG, Wei-Han LAI
  • Publication number: 20220359190
    Abstract: Method of manufacturing a semiconductor device, includes forming a protective layer over substrate having a plurality of protrusions and recesses. The protective layer includes polymer composition including polymer having repeating units of one or more of: Wherein a, b, c, d, e, f, g, h, and i are each independently H, —OH, —ROH, —R(OH)2, —NH2, —NHR, —NR2, —SH, —RSH, or —R(SH)2, wherein at least one of a, b, c, d, e, f, g, h, and i on each repeating unit is not H. R, R1, and R2 are each independently a C1-C10 alkyl group, a C3-C10 cycloalkyl group, a C1-C10 hydroxyalkyl group, a C2-C10 alkoxy group, a C2-C10 alkoxy alkyl group, a C2-C10 acetyl group, a C3-C10 acetylalkyl group, a C1-C10 carboxyl group, a C2-C10 alkyl carboxyl group, or a C4-C10 cycloalkyl carboxyl group, and n is 2-1000. A resist layer is formed over the protective layer, and the resist layer is patterned.
    Type: Application
    Filed: April 23, 2021
    Publication date: November 10, 2022
    Inventors: Jing Hong Huang, Wei-Han Lai, Ching-Yu Chang
  • Patent number: 11476108
    Abstract: A method of manufacturing a semiconductor device includes forming a spin on carbon layer comprising a spin on carbon composition over a semiconductor substrate. The spin on carbon layer is first heated at a first temperature to partially crosslink the spin on carbon layer. The spin on carbon layer is second heated at a second temperature to further crosslink the spin on carbon layer. An overlayer is formed over the spin on carbon layer. The second temperature is higher than the first temperature.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: October 18, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jing Hong Huang, Ching-Yu Chang, Wei-Han Lai
  • Patent number: 11442364
    Abstract: A method includes forming a bottom layer over a semiconductor substrate, where the bottom layer includes a polymer bonded to a first cross-linker and a second cross-linker, the first cross-linker being configured to be activated by ultraviolet (UV) radiation and the second cross-linker being configured to be activated by heat at a first temperature. The method then proceeds to exposing the bottom layer to a UV source to activate the first cross-linker, resulting in an exposed bottom layer, where the exposing activates the first cross-linker. The method further includes baking the exposed bottom layer, where the baking activates the second cross-linker.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: September 13, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jing Hong Huang, Chien-Wei Wang, Shang-Wern Chang, Ching-Yu Chang
  • Publication number: 20220037150
    Abstract: A method of manufacturing a semiconductor device includes forming a spin on carbon layer comprising a spin on carbon composition over a semiconductor substrate. The spin on carbon layer is first heated at a first temperature to partially crosslink the spin on carbon layer. The spin on carbon layer is second heated at a second temperature to further crosslink the spin on carbon layer. An overlayer is formed over the spin on carbon layer. The second temperature is higher than the first temperature.
    Type: Application
    Filed: August 3, 2020
    Publication date: February 3, 2022
    Inventors: Jing Hong HUANG, Ching-Yu CHANG, Wei-Han LAI
  • Publication number: 20200006048
    Abstract: A method includes forming a bottom layer over a semiconductor substrate, where the bottom layer includes a polymer bonded to a first cross-linker and a second cross-linker, the first cross-linker being configured to be activated by ultraviolet (UV) radiation and the second cross-linker being configured to be activated by heat at a first temperature. The method then proceeds to exposing the bottom layer to a UV source to activate the first cross-linker, resulting in an exposed bottom layer, where the exposing activates the first cross-linker. The method further includes baking the exposed bottom layer, where the baking activates the second cross-linker.
    Type: Application
    Filed: May 16, 2019
    Publication date: January 2, 2020
    Inventors: Jing Hong Huang, Chien-Wei Wang, Shang-Wern Chang, Ching-Yu Chang