Patents by Inventor Jing-Huei HUANG

Jing-Huei HUANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11908740
    Abstract: A semiconductor structure is provided. The semiconductor structure includes a gate structure over a substrate. The semiconductor structure also includes source/drain structures on opposite sides of the gate structure. The semiconductor structure also includes a dielectric layer over the gate structure and the source/drain structures. The semiconductor structure also includes a via plug passing through the dielectric layer and including a first group IV element. The dielectric layer includes a second group IV element, a first compound, and a second compound, and the second compound includes elements in the first compound and the first group IV element.
    Type: Grant
    Filed: November 25, 2022
    Date of Patent: February 20, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tung-Po Hsieh, Su-Hao Liu, Hong-Chih Liu, Jing-Huei Huang, Jie-Huang Huang, Lun-Kuang Tan, Huicheng Chang, Liang-Yin Chen, Kuo-Ju Chen
  • Publication number: 20230259036
    Abstract: A method includes forming a resist pattern over a structure, the resist pattern having a trench surrounded by first resist walls extending lengthwise along a first direction and second resist walls extending lengthwise along a second direction perpendicular to the first direction. The method includes loading the structure and the resist pattern into an ion implanter so that a top surface of the resist pattern faces an ion travel direction of the ion implanter. The method includes tilting the structure and the resist pattern so that the ion travel direction forms a tilt angle with respect to an axis perpendicular to the top surface of the resist pattern. The method includes first rotating the structure and the resist pattern around the axis to a first position. The method includes first implanting ions into the resist pattern with the structure and the resist pattern at the first position.
    Type: Application
    Filed: April 24, 2023
    Publication date: August 17, 2023
    Inventors: Jing-Huei Huang, Ya-Wen Chiu, Lun-Kuang Tan
  • Patent number: 11635695
    Abstract: A method includes forming a resist pattern, the resist pattern having trenches oriented lengthwise along a first direction and separated by resist walls along both the first direction and a second direction perpendicular to the first direction. The method further includes loading the resist pattern into an ion implanter so that a top surface of the resist pattern faces an ion travel direction, and tilting the resist pattern so that the ion travel direction forms a tilt angle with respect to an axis perpendicular to the top surface of the resist pattern. The method further includes rotating the resist pattern around the axis to a first position; implanting ions into the resist walls with the resist pattern at the first position; rotating the resist pattern around the axis by 180 degrees to a second position; and implanting ions into the resist walls with the resist pattern at the second position.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: April 25, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jing-Huei Huang, Ya-Wen Chiu, Lun-Kuang Tan
  • Publication number: 20230093608
    Abstract: A semiconductor structure is provided. The semiconductor structure includes a gate structure over a substrate. The semiconductor structure also includes source/drain structures on opposite sides of the gate structure. The semiconductor structure also includes a dielectric layer over the gate structure and the source/drain structures. The semiconductor structure also includes a via plug passing through the dielectric layer and including a first group IV element. The dielectric layer includes a second group IV element, a first compound, and a second compound, and the second compound includes elements in the first compound and the first group IV element.
    Type: Application
    Filed: November 25, 2022
    Publication date: March 23, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tung-Po HSIEH, Su-Hao LIU, Hong-Chih LIU, Jing-Huei HUANG, Jie-Huang HUANG, Lun-Kuang TAN, Huicheng CHANG, Liang-Yin CHEN, Kuo-Ju CHEN
  • Patent number: 11532485
    Abstract: In a gate last metal gate process for forming a transistor, a dielectric layer is formed over an intermediate transistor structure, the intermediate structure including a dummy gate electrode, typically formed of polysilicon. Various processes, such as patterning the polysilicon, planarizing top layers of the structure, and the like can remove top portions of the dielectric layer, which can result in decreased control of gate height when a metal gate is formed in place of the dummy gate electrode, decreased control of fin height for finFETs, and the like. Increasing the resistance of the dielectric layer to attack from these processes, such as by implanting silicon or the like into the dielectric layer before such other processes are performed, results in less removal of the top surface, and hence improved control of the resulting structure dimensions and performance.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: December 20, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Su-Hao Liu, Tsan-Chun Wang, Liang-Yin Chen, Jing-Huei Huang, Lun-Kuang Tan, Huicheng Chang
  • Patent number: 11515206
    Abstract: A semiconductor structure is provided. The semiconductor structure includes a gate structure over a fin structure. The semiconductor structure also includes a source/drain structure in the fin structure and adjacent to the gate structure. The semiconductor structure also includes a first contact plug over the source/drain structure. The semiconductor structure also includes a first via plug over the first contact plug. The semiconductor structure also includes a dielectric layer surrounding the first via plug. The first via plug includes a first group IV element and the dielectric layer includes the first group IV element and a second group IV element.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: November 29, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tung-Po Hsieh, Su-Hao Liu, Hong-Chih Liu, Jing-Huei Huang, Jie-Huang Huang, Lun-Kuang Tan, Huicheng Chang, Liang-Yin Chen, Kuo-Ju Chen
  • Publication number: 20210389679
    Abstract: A method includes forming a resist pattern, the resist pattern having trenches oriented lengthwise along a first direction and separated by resist walls along both the first direction and a second direction perpendicular to the first direction. The method further includes loading the resist pattern into an ion implanter so that a top surface of the resist pattern faces an ion travel direction, and tilting the resist pattern so that the ion travel direction forms a tilt angle with respect to an axis perpendicular to the top surface of the resist pattern. The method further includes rotating the resist pattern around the axis to a first position; implanting ions into the resist walls with the resist pattern at the first position; rotating the resist pattern around the axis by 180 degrees to a second position; and implanting ions into the resist walls with the resist pattern at the second position.
    Type: Application
    Filed: June 15, 2020
    Publication date: December 16, 2021
    Inventors: Jing-Huei Huang, Ya-Wen Chiu, Lun-Kuang Tan
  • Publication number: 20210111035
    Abstract: In a gate last metal gate process for forming a transistor, a dielectric layer is formed over an intermediate transistor structure, the intermediate structure including a dummy gate electrode, typically formed of polysilicon. Various processes, such as patterning the polysilicon, planarizing top layers of the structure, and the like can remove top portions of the dielectric layer, which can result in decreased control of gate height when a metal gate is formed in place of the dummy gate electrode, decreased control of fin height for finFETs, and the like. Increasing the resistance of the dielectric layer to attack from these processes, such as by implanting silicon or the like into the dielectric layer before such other processes are performed, results in less removal of the top surface, and hence improved control of the resulting structure dimensions and performance.
    Type: Application
    Filed: November 30, 2020
    Publication date: April 15, 2021
    Inventors: Su-Hao Liu, Tsan-Chun Wang, Liang-Yin Chen, Jing-Huei Huang, Lun-Kuang Tan, Huicheng Chang
  • Publication number: 20200402853
    Abstract: A semiconductor structure is provided. The semiconductor structure includes a gate structure over a fin structure. The semiconductor structure also includes a source/drain structure in the fin structure and adjacent to the gate structure. The semiconductor structure also includes a first contact plug over the source/drain structure. The semiconductor structure also includes a first via plug over the first contact plug. The semiconductor structure also includes a dielectric layer surrounding the first via plug. The first via plug includes a first group IV element and the dielectric layer includes the first group IV element and a second group IV element.
    Type: Application
    Filed: August 31, 2020
    Publication date: December 24, 2020
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tung-Po HSIEH, Su-Hao LIU, Hong-Chih LIU, Jing-Huei HUANG, Jie-Huang HUANG, Lun-Kuang TAN, Huicheng CHANG, Liang-Yin CHEN, Kuo-Ju CHEN
  • Patent number: 10854471
    Abstract: In a gate last metal gate process for forming a transistor, a dielectric layer is formed over an intermediate transistor structure, the intermediate structure including a dummy gate electrode, typically formed of polysilicon. Various processes, such as patterning the polysilicon, planarizing top layers of the structure, and the like can remove top portions of the dielectric layer, which can result in decreased control of gate height when a metal gate is formed in place of the dummy gate electrode, decreased control of fin height for finFETs, and the like. Increasing the resistance of the dielectric layer to attack from these processes, such as by implanting silicon or the like into the dielectric layer before such other processes are performed, results in less removal of the top surface, and hence improved control of the resulting structure dimensions and performance.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: December 1, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Su-Hao Liu, Tsan-Chun Wang, Liang-Yin Chen, Jing-Huei Huang, Lun-Kuang Tan, Huicheng Chang
  • Patent number: 10763168
    Abstract: A semiconductor structure and a method for forming the same are provided. The semiconductor structure includes a gate structure, a source/drain structure, a first contact plug and a first via plug. The gate structure is positioned over a fin structure. The source/drain structure is positioned in the fin structure and adjacent to the gate structure. The first contact plug is positioned over the source/drain structure. The first via plug is positioned over the first contact plug. The first via plug includes a first group IV element.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: September 1, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tung-Po Hsieh, Su-Hao Liu, Hong-Chih Liu, Jing-Huei Huang, Jie-Huang Huang, Lun-Kuang Tan, Huicheng Chang, Liang-Yin Chen, Kuo-Ju Chen
  • Patent number: 10700181
    Abstract: A FinFET device structure and method for forming the same are provided. The method includes forming a fin structure over a substrate and forming a dummy gate electrode over a middle portion of the fin structure. The method also includes forming a spacer layer on the dummy gate electrode and on the fin structure and performing a plasma doping process on the dummy gate electrode and on the spacer layer. The method further includes performing an annealing process, wherein the annealing process is performed by using a gas comprising oxygen, such that a doped region is formed in a portion of the fin structure, and the spacer layer is doped with oxygen after the annealing process.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: June 30, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Han Huang, Wen-Yen Chen, Jing-Huei Huang
  • Publication number: 20190348298
    Abstract: In a gate last metal gate process for forming a transistor, a dielectric layer is formed over an intermediate transistor structure, the intermediate structure including a dummy gate electrode, typically formed of polysilicon. Various processes, such as patterning the polysilicon, planarizing top layers of the structure, and the like can remove top portions of the dielectric layer, which can result in decreased control of gate height when a metal gate is formed in place of the dummy gate electrode, decreased control of fin height for finFETs, and the like. Increasing the resistance of the dielectric layer to attack from these processes, such as by implanting silicon or the like into the dielectric layer before such other processes are performed, results in less removal of the top surface, and hence improved control of the resulting structure dimensions and performance.
    Type: Application
    Filed: July 22, 2019
    Publication date: November 14, 2019
    Inventors: Su-Hao Liu, Tsan-Chun Wang, Liang-Yin Chen, Jing-Huei Huang, Lun-Kuang Tan, Huicheng Chang
  • Patent number: 10361094
    Abstract: In a gate last metal gate process for forming a transistor, a dielectric layer is formed over an intermediate transistor structure, the intermediate structure including a dummy gate electrode, typically formed of polysilicon. Various processes, such as patterning the polysilicon, planarizing top layers of the structure, and the like can remove top portions of the dielectric layer, which can result in decreased control of gate height when a metal gate is formed in place of the dummy gate electrode, decreased control of fin height for finFETs, and the like. Increasing the resistance of the dielectric layer to attack from these processes, such as by implanting silicon or the like into the dielectric layer before such other processes are performed, results in less removal of the top surface, and hence improved control of the resulting structure dimensions and performance.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: July 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Su-Hao Liu, Tsan-Chun Wang, Liang-Yin Chen, Jing-Huei Huang, Lun-Kuang Tan, Huicheng Chang
  • Publication number: 20190157148
    Abstract: A semiconductor structure and a method for forming the same are provided. The semiconductor structure includes a gate structure, a source/drain structure, a first contact plug and a first via plug. The gate structure is positioned over a fin structure. The source/drain structure is positioned in the fin structure and adjacent to the gate structure. The first contact plug is positioned over the source/drain structure. The first via plug is positioned over the first contact plug. The first via plug includes a first group IV element.
    Type: Application
    Filed: June 28, 2018
    Publication date: May 23, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tung-Po HSIEH, Su-Hao LIU, Hong-Chih LIU, Jing-Huei HUANG, Jie-Huang HUANG, Lun-Kuang TAN, Huicheng CHANG, Liang-Yin CHEN, Kuo-Ju CHEN
  • Patent number: 10177006
    Abstract: In a gate last metal gate process for forming a transistor, a dielectric layer is formed over an intermediate transistor structure, the intermediate structure including a dummy gate electrode, typically formed of polysilicon. Various processes, such as patterning the polysilicon, planarizing top layers of the structure, and the like can remove top portions of the dielectric layer, which can result in decreased control of gate height when a metal gate is formed in place of the dummy gate electrode, decreased control of fin height for finFETs, and the like. Increasing the resistance of the dielectric layer to attack from these processes, such as by implanting silicon or the like into the dielectric layer before such other processes are performed, results in less removal of the top surface, and hence improved control of the resulting structure dimensions and performance.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: January 8, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Su-Hao Liu, Tsan-Chun Wang, Liang-Yin Chen, Jing-Huei Huang, Lun-Kuang Tan, Huicheng Chang
  • Publication number: 20180366341
    Abstract: In a gate last metal gate process for forming a transistor, a dielectric layer is formed over an intermediate transistor structure, the intermediate structure including a dummy gate electrode, typically formed of polysilicon. Various processes, such as patterning the polysilicon, planarizing top layers of the structure, and the like can remove top portions of the dielectric layer, which can result in decreased control of gate height when a metal gate is formed in place of the dummy gate electrode, decreased control of fin height for finFETs, and the like. Increasing the resistance of the dielectric layer to attack from these processes, such as by implanting silicon or the like into the dielectric layer before such other processes are performed, results in less removal of the top surface, and hence improved control of the resulting structure dimensions and performance.
    Type: Application
    Filed: July 31, 2018
    Publication date: December 20, 2018
    Inventors: Su-Hao Liu, Tsan-Chun Wang, Liang-Yin Chen, Jing-Huei Huang, Lun-Kuang Tan, Huicheng Chang
  • Publication number: 20180151387
    Abstract: In a gate last metal gate process for forming a transistor, a dielectric layer is formed over an intermediate transistor structure, the intermediate structure including a dummy gate electrode, typically formed of polysilicon. Various processes, such as patterning the polysilicon, planarizing top layers of the structure, and the like can remove top portions of the dielectric layer, which can result in decreased control of gate height when a metal gate is formed in place of the dummy gate electrode, decreased control of fin height for finFETs, and the like. Increasing the resistance of the dielectric layer to attack from these processes, such as by implanting silicon or the like into the dielectric layer before such other processes are performed, results in less removal of the top surface, and hence improved control of the resulting structure dimensions and performance.
    Type: Application
    Filed: February 23, 2017
    Publication date: May 31, 2018
    Inventors: Su-Hao Liu, Tsan-Chun Wang, Liang-Yin Chen, Jing-Huei Huang, Lun-Kuang Tan, Huicheng Chang
  • Publication number: 20180151695
    Abstract: A FinFET device structure and method for forming the same are provided. The method includes forming a fin structure over a substrate and forming a dummy gate electrode over a middle portion of the fin structure. The method also includes forming a spacer layer on the dummy gate electrode and on the fin structure and performing a plasma doping process on the dummy gate electrode and on the spacer layer. The method further includes performing an annealing process, wherein the annealing process is performed by using a gas comprising oxygen, such that a doped region is formed in a portion of the fin structure, and the spacer layer is doped with oxygen after the annealing process.
    Type: Application
    Filed: May 9, 2017
    Publication date: May 31, 2018
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Han HUANG, Wen-Yen CHEN, Jing-Huei HUANG
  • Publication number: 20150093840
    Abstract: A colorimetric immunoassay of the present invention uses nanostructured material with high absorption and high scattering ability as a label material for biosensors. Subject matters to be measured may be characterized or quantified by determining the changes in optical properties of the nanostructured material. The biosensor of the present invention may be operated in broad light wavelength range and detected by direct observation with naked eye. The biosensor of the present invention may be also provided with advantages such as higher sensitivity and lower cost.
    Type: Application
    Filed: December 5, 2013
    Publication date: April 2, 2015
    Applicant: NATIONAL TSING HUA UNIVERSITY
    Inventors: Jing-Huei HUANG, Ying-Chan HUNG, Tri-Rung YEW, Pin CHANG