Patents by Inventor Jing-Kai LIN

Jing-Kai LIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10020515
    Abstract: The present invention relates to a strontium magnesium molybdenum oxide material having perovskite structure and the method for preparing the same. Citric acid is adopted as the chelating agent. By using sol-gel pyrolysis and replacing a portion of strontium in Sr2MgMoO6-? by cerium and a portion of magnesium by copper, a material with a chemical formula of Sr2-xCexMg1-yCuyMoO6-? is produced, where 0?x<2, 0<y<1, and 0<?<6. Thereby, the electrical conductivity of the material is improved. The perovskite-type cerium- and copper-replaced strontium magnesium molybdenum oxide significantly increases the electrical conductivity of the material and can be applied as the anode material for solid oxide fuel cell (SOFC).
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: July 10, 2018
    Assignee: Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, R.O.C.
    Inventors: Tsui-Yun Chung, Chien-Kuo Liu, Jing-Kai Lin, Hui-Ping Tseng, Ruey-Yi Lee
  • Patent number: 9905873
    Abstract: The invention provides a permeable metal substrate and its manufacturing method. The permeable metal substrate includes a substrate body and a permeable powder layer. The permeable powder layer is located on the top of the substrate body. The substrate body can be a thick substrate or formed of a thick substrate and a thin substrate that are welded together. Both the thick and thin substrates have a plurality of permeable straight gas channels. In addition, a metal-supported solid oxide fuel cell and its manufacturing method are also provided.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: February 27, 2018
    Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH, ATOMIC ENERGY COUNCIL, EXECUTIVE YUAN, R.O.C.
    Inventors: Chang-Sing Hwang, Chun-Huang Tsai, Chun-Liang Chang, Zong-Yang Chuang Shie, Sheng-Fu Yang, Te-Jung Huang, Ming-Hsiu Wu, Jing-Kai Lin
  • Publication number: 20180019478
    Abstract: The present invention relates to a strontium magnesium molybdenum oxide material having perovskite structure and the method for preparing the same. Citric acid is adopted as the chelating agent. By using sol-gel pyrolysis and replacing a portion of strontium in Sr2MgMoO6-? by cerium and a portion of magnesium by copper, a material with a chemical formula of Sr2-xCexMg1-yCuyMoO6-? is produced, where 0?x<2, 0<y<1, and 0<?<6. Thereby, the electrical conductivity of the material is improved. The perovskite-type cerium- and copper-replaced strontium magnesium molybdenum oxide significantly increases the electrical conductivity of the material and can be applied as the anode material for solid oxide fuel cell (SOFC).
    Type: Application
    Filed: July 14, 2016
    Publication date: January 18, 2018
    Inventors: TSUI-YUN CHUNG, CHIEN-KUO LIU, JING-KAI LIN, HUI-PING TSENG, RUEY-YI LEE
  • Publication number: 20170335475
    Abstract: The present invention is to provide a solid oxide fuel cell test apparatus for a solid oxide electrolysis cell with a tubular evaporator furnished in the fuel delivery mechanism of the solid oxide fuel cell test apparatus being connected in serial to an external water supply, and the tubular evaporator having multilayer porous internal filler material may facilitate the inflow of water to be uniformly diffused and heated, providing a stable water vapor for introducing into the fuel cell with the fuel, mitigating adverse effects caused by pulse voltages to the fuel cell during high-temperature water electrolysis hydrogen test, so that more reliable test is achievable in order to obtain a solid oxide fuel cell with hydrogen generation from the water electrolysis.
    Type: Application
    Filed: May 19, 2016
    Publication date: November 23, 2017
    Inventors: JING-KAI LIN, SHIH-WEI CHENG, SZU-HAN WU, WEI-HONG SHIU, HUNG-HSIANG LIN, TZENG-GUANG CHUNG, YUNG-NENG CHENG, RUEY-YI LEE
  • Publication number: 20170288240
    Abstract: A fuel cell power generation module includes a fuel cell stack body combined with a reformer, a burner, and a plate-type evaporator that are sequentially top-down stacked and assembled into a detachable power generation module, a gas-water separator to recycle mixed fuel that is not completely reacted with the fuel cell stack body, and a part of the recycled fuel is introduced into the burner for burning, and the burner thermal thus produced is used for heating the fuel cell stack body and the plate-type evaporator through thermal radiation and heat conduction, meanwhile, hot air produced by the burner can be used for heating air that enters the fuel cell stack body, and the plate-type evaporator converts the water into steam that feeds into the fuel cell stack body with fuel for reaction.
    Type: Application
    Filed: March 31, 2016
    Publication date: October 5, 2017
    Inventors: SZU-HAN WU, Shih-Wei CHENG, Wei-Hong SHIU, Jing-Kai LIN, Hung-Hsiang LIN, Yung-Neng CHENG, Ruey-Yi LEE
  • Publication number: 20170125833
    Abstract: The invention provides a permeable metal substrate and its manufacturing method. The permeable metal substrate includes a substrate body and a permeable powder layer. The permeable powder layer is located on the top of the substrate body. The substrate body can be a thick substrate or formed of a thick substrate and a thin substrate that are welded together. Both the thick and thin substrates have a plurality of permeable straight gas channels. In addition, a metal-supported solid oxide fuel cell and its manufacturing method are also provided.
    Type: Application
    Filed: July 20, 2016
    Publication date: May 4, 2017
    Inventors: CHANG-SING HWANG, Chun-Huang TSAI, Chun-Liang CHANG, Zong-Yang CHUANG SHIE, Sheng-Fu YANG, Te-Jung HUANG, Ming-Hsiu WU, Jing-Kai LIN