Patents by Inventor JING-LEI ZHU

JING-LEI ZHU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9337607
    Abstract: A laser includes a total reflective mirror, an output mirror, a discharge lamp, and an active laser medium. The total reflective mirror, the output mirror, and the discharge lamp define a resonant cavity. The active laser medium is filled in the resonant cavity. The total reflective mirror includes a body, a metal film, and at least one microstructure. The at least one microstructure has a height and a lateral size, and both the height and the lateral size are in a range from about 0.5? to about 2?, while ? is a working wavelength of the laser.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: May 10, 2016
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jun Zhu, Jing-Lei Zhu, Qun-Qing Li, Kai-Li Jiang, Chen Feng, Guo-Fan Jin, Shou-Shan Fan
  • Patent number: 9160133
    Abstract: A laser includes a total reflective mirror, an output mirror, a discharge lamp, and an active laser medium. The total reflective mirror, the output mirror, and the discharge lamp define a resonant cavity. The active laser medium is filled in the resonant cavity. The total reflective mirror includes a body, a metal film, and at least one microstructure. The at least one microstructure is concaved from a first reflective surface of the total reflective mirror. The at least one microstructure has a depth and a lateral size, and both the depth and the lateral size are in a range from about 0.5? to about 2?, while ? is a working wavelength of the laser.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: October 13, 2015
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jun Zhu, Jing-Lei Zhu, Qun-Qing Li, Kai-Li Jiang, Chen Feng, Guo-Fan Jin, Shou-Shan Fan
  • Patent number: 9160134
    Abstract: A laser includes a total reflective mirror, an output mirror, a discharge lamp, and an active laser medium. The total reflective mirror, the output mirror, and the discharge lamp define a resonant cavity. The active laser medium is filled in the resonant cavity. The total reflective mirror includes a microstructure. The microstructure is convex ring-shaped structure. The convex ring-shaped structure has a height and a width, and both the height and the width are in a range from about 0.5? to about 2?, while ? is a working wavelength of the laser.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: October 13, 2015
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jun Zhu, Jing-Lei Zhu, Qun-Qing Li, Kai-Li Jiang, Chen Feng, Guo-Fan Jin, Shou-Shan Fan
  • Patent number: 9077145
    Abstract: A laser includes a total reflective mirror, an output mirror, a discharge lamp, and an active laser medium. The total reflective mirror, the output mirror, and the discharge lamp define a resonant cavity. The active laser medium is filled in the resonant cavity. The total reflective mirror includes a microstructure. The microstructure is concave ring-shaped structure. The concave ring-shaped structure has a depth and a width, and both the depth and the width are in a range from about 0.5? to about 2?, while ? is a working wavelength of the laser.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: July 7, 2015
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jing-Lei Zhu, Jun Zhu, Qun-Qing Li, Kai-Li Jiang, Chen Feng, Guo-Fan Jin, Shou-Shan Fan
  • Patent number: 9059558
    Abstract: A laser includes a total reflective mirror, an output mirror, a discharge lamp, and an active laser medium. The total reflective mirror, the output mirror, and the discharge lamp define a resonant cavity. The active laser medium is filled in the resonant cavity. The total reflective mirror includes a body, a metal film, and at least one microstructure. Each of the at least one microstructure is a step structure. The step structure includes a plurality of cylinders stacked with each other with respect to their diameters. Both the height and the diameter of the cylinders are in a range from about 0.5? to about 2?, while ? is a working wavelength of the laser.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: June 16, 2015
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jing-Lei Zhu, Jun Zhu, Qun-Qing Li, Kai-Li Jiang, Chen Feng, Guo-Fan Jin, Shou-Shan Fan
  • Patent number: 8981319
    Abstract: A system for measuring intensity distribution of light includes a carbon nanotube array located on a surface of a substrate, a reflector and an imaging element. The carbon nanotube array absorbs photons of a light source and radiates a visible light. The reflector is used to reflect the visible light, and the reflector is spaced from the carbon nanotube array. The carbon nanotube array is located between the reflector and the substrate. The imaging element is used to image the visible light. The imaging element is spaced from the substrate.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: March 17, 2015
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Jun Zhu, Jing-Lei Zhu, Kai-Li Jiang, Chen Feng, Ji-Qing Wei, Guo-Fan Jin, Shou-Shan Fan
  • Publication number: 20140294034
    Abstract: A laser includes a total reflective mirror, an output mirror, a discharge lamp, and an active laser medium. The total reflective mirror, the output mirror, and the discharge lamp define a resonant cavity. The active laser medium is filled in the resonant cavity. The total reflective mirror includes a microstructure. The microstructure is concave ring-shaped structure. The concave ring-shaped structure has a depth and a width, and both the depth and the width are in a range from about 0.5? to about 2?, while ? is a working wavelength of the laser.
    Type: Application
    Filed: December 20, 2013
    Publication date: October 2, 2014
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., Tsinghua University
    Inventors: JING-LEI ZHU, JUN ZHU, QUN-QING LI, KAI-LI JIANG, CHEN FENG, GUO-FAN JIN, SHOU-SHAN FAN
  • Publication number: 20140294033
    Abstract: A laser includes a total reflective mirror, an output mirror, a discharge lamp, and an active laser medium. The total reflective mirror, the output mirror, and the discharge lamp define a resonant cavity. The active laser medium is filled in the resonant cavity. The total reflective mirror includes a body, a metal film, and at least one microstructure. Each of the at least one microstructure is a step structure. The step structure includes a plurality of cylinders stacked with each other with respect to their diameters. Both the height and the diameter of the cylinders are in a range from about 0.5? to about 2?, while ? is a working wavelength of the laser.
    Type: Application
    Filed: December 20, 2013
    Publication date: October 2, 2014
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: JING-LEI ZHU, JUN ZHU, QUN-QING LI, KAI-LI JIANG, CHEN FENG, GUO-FAN JIN, SHOU-SHAN FAN
  • Patent number: 8830453
    Abstract: A method for measuring intensity distribution of light includes a step of providing a carbon nanotube array located on a surface of a substrate. The carbon nanotube array has a top surface away from the substrate. The carbon nanotube array with the substrate is located in an inertia environment or a vacuum environment. A light source irradiates the top surface of the carbon nanotube array, to make the carbon nanotube array radiate a visible light. A reflector is provided, and the visible light is reflected by the reflector. An imaging element images the visible light reflected by the reflector, to obtain an intensity distribution of the light source.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: September 9, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Jun Zhu, Jing-Lei Zhu, Kai-Li Jiang, Chen Feng, Ji-Qing Wei, Guo-Fan Jin, Shou-Shan Fan
  • Publication number: 20140177667
    Abstract: A laser includes a total reflective mirror, an output mirror, a discharge lamp, and an active laser medium. The total reflective mirror, the output mirror, and the discharge lamp define a resonant cavity. The active laser medium is filled in the resonant cavity. The total reflective mirror includes a body, a metal film, and at least one microstructure. The at least one microstructure has a height and a lateral size, and both the height and the lateral size are in a range from about 0.5? to about 2?, while ? is a working wavelength of the laser.
    Type: Application
    Filed: December 20, 2013
    Publication date: June 26, 2014
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., Tsinghua University
    Inventors: JUN ZHU, JING-LEI ZHU, QUN-QING LI, KAI-LI JIANG, CHEN FENG, GUO-FAN JIN, SHOU-SHAN FAN
  • Publication number: 20140177665
    Abstract: A laser includes a total reflective mirror, an output mirror, a discharge lamp, and an active laser medium. The total reflective mirror, the output mirror, and the discharge lamp define a resonant cavity. The active laser medium is filled in the resonant cavity. The total reflective mirror includes a body, a metal film, and at least one microstructure. The at least one microstructure is concaved from a first reflective surface of the total reflective mirror. The at least one microstructure has a depth and a lateral size, and both the depth and the lateral size are in a range from about 0.5? to about 2?, while ? is a working wavelength of the laser.
    Type: Application
    Filed: December 20, 2013
    Publication date: June 26, 2014
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: JUN ZHU, JING-LEI ZHU, QUN-QING LI, KAI-LI JIANG, CHEN FENG, GUO-FAN JIN, SHOU-SHAN FAN
  • Publication number: 20140177666
    Abstract: A laser includes a total reflective mirror, an output mirror, a discharge lamp, and an active laser medium. The total reflective mirror, the output mirror, and the discharge lamp define a resonant cavity. The active laser medium is filled in the resonant cavity. The total reflective mirror includes a microstructure. The microstructure is convex ring-shaped structure. The convex ring-shaped structure has a height and a width, and both the height and the width are in a range from about 0.5? to about 2?, while ? is a working wavelength of the laser.
    Type: Application
    Filed: December 20, 2013
    Publication date: June 26, 2014
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., Tsinghua University
    Inventors: JUN ZHU, JING-LEI ZHU, QUN-QING LI, KAI-LI JIANG, CHEN FENG, GUO-FAN JIN, SHOU-SHAN FAN
  • Publication number: 20130329213
    Abstract: A method for measuring intensity distribution of light includes a step of providing a carbon nanotube array located on a surface of a substrate. The carbon nanotube array has a top surface away from the substrate. The carbon nanotube array with the substrate is located in an inertia environment or a vacuum environment. A light source irradiates the top surface of the carbon nanotube array, to make the carbon nanotube array radiate a visible light. A reflector is provided, and the visible light is reflected by the reflector. An imaging element images the visible light reflected by the reflector, to obtain an intensity distribution of the light source.
    Type: Application
    Filed: December 28, 2012
    Publication date: December 12, 2013
    Inventors: JUN ZHU, JING-LEI ZHU, KAI-LI JIANG, CHEN FENG, JI-QING WEI, GUO-FAN JIN, SHOU-SHAN FAN
  • Publication number: 20130327960
    Abstract: A system for measuring intensity distribution of light includes a carbon nanotube array located on a surface of a substrate, a reflector and an imaging element. The carbon nanotube array absorbs photons of a light source and radiates a visible light. The reflector is used to reflect the visible light, and the reflector is spaced from the carbon nanotube array. The carbon nanotube array is located between the reflector and the substrate. The imaging element is used to image the visible light. The imaging element is spaced from the substrate.
    Type: Application
    Filed: December 28, 2012
    Publication date: December 12, 2013
    Inventors: JUN ZHU, JING-LEI ZHU, KAI-LI JIANG, CHEN FENG, JI-QING WEI, GUO-FAN JIN, SHOU-SHAN FAN